thrive
@/ SIGGRAPH2019

LOS ANGELES « 28 JULY - 1 AUGUST

Introduction to Real-time Ray Tracing Part 2

(GOING FAST. PARALLELIZING
YOUR RAY TRACER

Chris Wyman

Principal Research Scientist
NVIDIA

/;_ thrive
/R LA

SOME PRELIMINARIES

ldeas needed before GPU ray tracing

YOU JUST GOT THE BASICS

> thrive
@SIGGRAPHZI]W

3 LOS ANGELES = 28 JULY - 1 AUGUST

YOU JUST GOT THE BASICS

4 But additional features expected for GPU rendering

> thrive
@SIGGRAPHZI]W

4 LOS ANGELES = 28 JULY - 1 AUGUST

YOU JUST GOT THE BASICS

4 But additional features expected for GPU rendering
— Typically, increased complexity; not just a few primitives

YOU JUST GOT THE BASICS

4 But additional features expected for GPU rendering
— Typically, increased complexity; not just a few primitives
— Render triangle meshes
— Just collections of triangles approximating 3D shapes
— Easy enough; intersect each triangle in turn

YOU JUST GOT THE BASICS

4 But additional features expected for GPU rendering
— Typically, increased complexity; not just a few primitives
— Render triangle meshes
— Just collections of triangles approximating 3D shapes
— Easy enough; intersect each triangle in turn
— Mesh files usually contain material information
— Often small-scale detail stored in textures

HOW TO HANDLE MATERIALS AND TEXTURES?

> thrive
@SIGGRAPHZI]W

8 LOS ANGELES = 28 JULY - 1 AUGUST

HOW TO HANDLE MATERIALS AND TEXTURES?

4 Ray-primitive intersection
— Not just binary: Did we hit? Yes/ No
— Also need to store attributes at the hit point, e.g.:
 Positions
* Normal
« Color

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

HOW TO HANDLE MATERIALS AND TEXTURES?

4 Ray-primitive intersection
— Not just binary: Did we hit? Yes/ No

— Also need to store attributes at the hit point, e.g.:
 Positions
* Normal
 Color
 Texture coordinates
« Material parameters
* Et cetera

10

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

HOW TO HANDLE MATERIALS AND TEXTURES?

® Ray-primitive intersection
— Not just binary: Did we hit? Yes/ No

— Also need to store attributes at the hit point, e.g.:
 Positions
* Normal
 Color
 Texture coordinates
« Material parameters
* Et cetera

11

Our texture:

SPEED
LIMIT

@smsmpuzuw

LOS ANGELES = 28 JULY - 1 AUGUST

HOW TO HANDLE MATERIALS AND TEXTURES?

® Ray-primitive intersection
— Not just binary: Did we hit? Yes/ No

— Also need to store attributes at the hit point, e.g.:
 Positions
* Normal
 Color
 Texture coordinates
« Material parameters
* Et cetera

12

Triangle vertices have:
texture coordinates

(0,0 (1,0)

SPEED
LIMIT

(0.1)

@smsmpuzuw

LOS ANGELES = 28 JULY - 1 AUGUST

HOW TO HANDLE MATERIALS AND TEXTURES?

® Ray-primitive intersection
— Not just binary: Did we hit? Yes/ No

— Also need to store attributes at the hit point, e.g.:
 Positions
* Normal
 Color
 Texture coordinates
« Material parameters

* Et cetera

Coordinate here:
Interpolates coordinates at vertices

13

Triangle vertices have:

texture coordinate
(0,0)

S
(1,0)

(0.1)

@smsmpuzuw

LOS ANGELES = 28 JULY - 1 AUGUST

HOW TO HANDLE MATERIALS AND TEXTURES?

® Ray-primitive intersection
— Not just binary: Did we hit? Yes/ No
— Also need to store attributes at the hit point, e.g.:

14

» Positions

 Normal

» Color

» Texture coordinates
« Material parameters
* Et cetera

Triangle vertices have:
texture coordinates

(0,0 (1,0)

Coordinate here:
Interpolates coordinates at vertices

Same interpolation as position,
normal, color, etc. (0,1)

Use coord to index in the image array @ SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

HOW TO HANDLE MATERIALS AND TEXTURES?

4 Ray-primitive intersection

— Not just binary: Did we hit? Yes/ No

— Also need to store attributes at the hit point, e.g.:
 Positions
* Normal
« Color
 Texture coordinates
« Material parameters
 Et cetera

— All attribute interpolation work the same way

15

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

/;_ thrive
/R LA

BASICS OF OPTIMIZATION

Before jumping to GPU, take some baby steps

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics

17

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics
— Why is tracing rays slow at all?

18

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics
— Why is tracing rays slow at all?

® Consider basic ray tracing algorithm:
— Take a ray through your scene

19

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics
— Why is tracing rays slow at all?

® Consider basic ray tracing algorithm:
— Take a ray through your scene
— Test triangle to find intersection

20

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics
— Why is tracing rays slow at all?

® Consider basic ray tracing algorithm:
— Take a ray through your scene

— Test triangle to find intersection
* Repeat

21

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics
— Why is tracing rays slow at all?

® Consider basic ray tracing algorithm:
— Take a ray through your scene

— Test triangle to find intersection
* Repeat

22

4

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics
— Why is tracing rays slow at all?

® Consider basic ray tracing algorithm:
— Take a ray through your scene

— Test triangle to find intersection
* Repeat

23

4

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics
— Why is tracing rays slow at all?

® Consider basic ray tracing algorithm:
— Take a ray through your scene

— Test triangle to find intersection
* Repeat

24

4

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics f
— Why is tracing rays slow at all?

® Consider basic ray tracing algorithm:
— Take a ray through your scene
— Test triangle to find intersection

* Repeat '
— How do you know when you’re done? A ’

= thrive
@SIGGRAPHZI]W

25 LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics
— Why is tracing rays slow at all?

® Consider basic ray tracing algorithm:
— Take a ray through your scene
— Test triangle to find intersection
* Repeat
— How do you know when you’re done?
* When you've tested every triangle?

26

4

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

BEFORE DIVING INTO PARALLELIZATION...

® Need to talk about some performance basics
— Why is tracing rays slow at all?

® Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection
* Repeat

— How do you know when you’re done?
* When you’ve tested every triangle?
* Very expensive...
» Every ray could test, 1 million (or more) triangles

27

WHAT’S OUR COMPUTATION BUDGET?

= thrive
@SIGGRAPHZI]W

28 LOS ANGELES =+ 28 JULY - 1 AUGUST

WHAT’S OUR COMPUTATION BUDGET?

® Let's be easy on ourselves:
— Target just 1920 x 1080 at 60 fps

= thrive
@SIGGRAPHZI]W

29 LOS ANGELES =+ 28 JULY - 1 AUGUST

WHAT’S OUR COMPUTATION BUDGET?

® Let's be easy on ourselves:
— Target just 1920 x 1080 at 60 fps
— We need 125 million pixels per second!

= thrive
@SIGGRAPHZI]W

30 LOS ANGELES =+ 28 JULY - 1 AUGUST

WHAT’S OUR COMPUTATION BUDGET?

® Let's be easy on ourselves:
— Target just 1920 x 1080 at 60 fps
— We need 125 million pixels per second!

® With a ~10 TFLOP state-of-the-art GPU

— If tracing one ray per pixel...
— About 80,000 flops per ray

= thrive
@SIGGRAPHZI]W

31 LOS ANGELES = 28 JULY - 1 AUGUST

WHAT’S OUR COMPUTATION BUDGET?

® Let's be easy on ourselves:
— Target just 1920 x 1080 at 60 fps
— We need 125 million pixels per second!

® With a ~10 TFLOP state-of-the-art GPU

— If tracing one ray per pixel...
— About 80,000 flops per ray

® An optimized triangle intersection: ~10 flops
— Can afford at most 8,000 intersections per ray

= thrive
@SIGGRAPHZI]W

32 LOS ANGELES =+ 28 JULY - 1 AUGUST

WHAT’S OUR COMPUTATION BUDGET?

® Let's be easy on ourselves:
— Target just 1920 x 1080 at 60 fps
— We need 125 million pixels per second!

® With a ~10 TFLOP state-of-the-art GPU

— If tracing one ray per pixel...
— About 80,000 flops per ray

® An optimized triangle intersection: ~10 flops
— Can afford at most 8,000 intersections per ray

® Conclusion: Don’t test every triangle! thrive

@smsmpuzuw

33 LOS ANGELES =+ 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

® Make the common case fast

> thrive
@SIGGRAPHZI]W

34 LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

® Make the common case fast

4 Common case in ray tracing?
— Ray does not intersect a triangle

35

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

® Make the common case fast

4 Common case in ray tracing?
— Ray does not intersect a triangle
— For any mesh, ray typically misses mesh

> thrive
@SIGGRAPHZI]W

36 LOS ANGELES =+ 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

® Make the common case fast

4 Common case in ray tracing?
— Ray does not intersect a triangle
— For any mesh, ray typically misses mesh

® Perhaps:
— First intersect a mesh bounding box

37

z,

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

® Make the common case fast

4 Common case in ray tracing?
— Ray does not intersect a triangle
— For any mesh, ray typically misses mesh

® Perhaps:
— First intersect a mesh bounding box
— Most rays avoid testing thousands of triangles
— But, extra box test when hit bunny

38

z,

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

4 What if you have thousands of bunnies?

> thrive
@SIGGRAPHZI]W

39 LOS ANGELES =+ 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

4 What if you have thousands of bunnies?

== thrive
L sicoraphny

KEY PRINCIPAL TO OPTIMIZATION:

4 What if you have thousands of bunnies?
— Common case: Ray misses most bunnies

| -

s

7o | |&

> thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

4 What if you have thousands of bunnies?
— Common case: Ray misses most bunnies
— Can skip testing this half...

—————————————————— -_--! .

> thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

42

KEY PRINCIPAL TO OPTIMIZATION:

4 What if you have thousands of bunnies?
— Common case: Ray misses most bunnies
— Can skip testing this half... and this quarter... with a few more boxes

------------------]é Pt Sy
b

> thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

43

KEY PRINCIPAL TO OPTIMIZATION:

4 Build a tree of bounding boxes
— Known as a “bounding volume hierarchy” or BVH

44

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

4 Build a tree of bounding boxes
— Known as a “bounding volume hierarchy” or BVH

® When using a principled tree build
— Reduces number of required intersections
— From O(N) to O(log N)

45

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

4 Build a tree of bounding boxes
— Known as a “bounding volume hierarchy” or BVH

® When using a principled tree build
— Reduces number of required intersections
— From O(N) to O(log N)

® With a binary tree, 1 million ray-triangle tests becomes:
— Around 20 ray-box tests
— Afew ray-triangle tests in leaf nodes

46

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

® Production ray tracers always use some acceleration structure

a7

thrive

@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:
® Production ray tracers always use some acceleration structure

4 But, which structure? How do you best build it?
— Literally decades of research

48

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

® Production ray tracers always use some acceleration structure

4 But, which structure? How do you best build it?
— Literally decades of research
— Continuing to today (e.g., “Wide BVH Traversal with a Short Stack,” Vaidyanathan et al. 2019)

> thrive
3 @SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

KEY PRINCIPAL TO OPTIMIZATION:

® Production ray tracers always use some acceleration structure

4 But, which structure? How do you best build it?
— Literally decades of research
— Continuing to today (e.g., “Wide BVH Traversal with a Short Stack,” Vaidyanathan et al. 2019)

® When starting real-time ray tracing, best bet:
— Use someone else’s code

— Quality of your BVH easily affects performance by 2x, 3x, or >10x
* Varies per scene!
— Luckily most APIs will build structure

> thrive
. 124’ SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

/7 thrive
—/ AL

GOING PARALLEL

Coding for massively parallel GPUs

RAY TRACING: EMBARRASSINGLY PARALLEL

® Defined: Little to no effort needed to separate into parallel tasks

52

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

RAY TRACING: EMBARRASSINGLY PARALLEL

® Defined: Little to no effort needed to separate into parallel tasks

® Rendering often a prototypical example of embarrassingly parallel
— One obvious way: assign one CPU or GPU core per pixel

= thrive
@SIGGRAPHZI]W

53 LOS ANGELES = 28 JULY - 1 AUGUST

RAY TRACING: EMBARRASSINGLY PARALLEL

% On CPU, call fork() or spawn() to create multiple threads
— Each thread works on separate pixels
— Wait for all threads to complete
— Some threads take longer — may need load balancing

54

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

RAY TRACING: EMBARRASSINGLY PARALLEL

® GPU programming model hides thread spawning and load-balancing
— Code appears serial, but you have access to current pixel index

= thrive
@SIGGRAPHZI]W

55 LOS ANGELES = 28 JULY - 1 AUGUST

RAY TRACING: EMBARRASSINGLY PARALLEL

® GPU programming model hides thread spawning and load-balancing
— Code appears serial, but you have access to current pixel index

// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]
void SimpleRayTracer() {

uint2 curPixel

DispatchRaysIndex().xy;

RayDesc ray { GetRayOrigin(curPixel), @.0f, GetRayDir(curPixel), le+38f };
RayPayload payload = { float3(e, o, @) };
TraceRay(..., ray, payload);

rayColors[curPixel] = float4(payload.rayColor, 1.0f);

= thrive
. @ SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

RAY TRACING: EMBARRASSINGLY PARALLEL

® GPU programming model hides thread spawning and load-balancing

57

— Code appears serial, but you have access to current pixel index

// Simple DirectX-like ray tracing shader
RWTexture<float4> rayColors;

[shader(“raygeneration”)]
void SimpleRayTracer() {

uint2 curPixel

DispatchRaysIndex().xy; |dentify the current pixel
{ GetRayOrigin(curPixel), @.0f, GetRayDir(curPixel), le+38f };

RayPayload payload = { float3(e, o, @) };

RayDesc ray

TraceRay(..., ray, payload);
rayColors[curPixel] = float4(payload.rayColor, 1.0f);

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

RAY TRACING: EMBARRASSINGLY PARALLEL

® GPU programming model hides thread spawning and load-balancing

58

— Code appears serial, but you have access to current pixel index

// Simple DirectX-like ray tracing shader
RWTexture<float4> rayColors;

[shader(“raygeneration”)]
void SimpleRayTracer() {

uint2 curPixel

DispatchRaysIndex().xy;

RayDesc ray { GetRayOrigin(curPixel), ©0.0f, GetRayDir(curPixel), 1e+38f }; ESEEtLjF) the ray
RayPayload payload = { float3(e, o, @) };
TraceRay(..., ray, payload);

rayColors[curPixel] = float4(payload.rayColor, 1.0f);

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

RAY TRACING: EMBARRASSINGLY PARALLEL

® GPU programming model hides thread spawning and load-balancing

59

— Code appears serial, but you have access to current pixel index

// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;
RayDesc ray = { GetRayOrigin(curPixel), ©@.0f, GetRayDir(curPixel), 1le+38f };
RayPayload payload = { float3(e, @, @) }; Initialize ray return values

TraceRay(..., ray, payload);
rayColors[curPixel] = float4(payload.rayColor, 1.0f);

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

RAY TRACING: EMBARRASSINGLY PARALLEL

® GPU programming model hides thread spawning and load-balancing

60

— Code appears serial, but you have access to current pixel index

// Simple DirectX-like ray tracing shader
RWTexture<float4> rayColors;

[shader(“raygeneration”)]
void SimpleRayTracer() {

uint2 curPixel

DispatchRaysIndex().xy;

RayDesc ray { GetRayOrigin(curPixel), ©0.0f, GetRayDir(curPixel), 1le+38f };

RayPayload payload = { float3(e, o, @) };

TraceRay(..., ray, payload); Trace your ray
rayColors[curPixel] = float4(payload.rayColor, 1.0f);

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

RAY TRACING: EMBARRASSINGLY PARALLEL

® GPU programming model hides thread spawning and load-balancing

61

— Code appears serial, but you have access to current pixel index

// Simple DirectX-like ray tracing shader
RWTexture<float4> rayColors;

[shader(“raygeneration”)]
void SimpleRayTracer() {

uint2 curPixel

DispatchRaysIndex().xy;

RayDesc ray { GetRayOrigin(curPixel), @.0f, GetRayDir(curPixel), le+38f };
RayPayload payload = { float3(e, o, @) };

TraceRay(..., ray, payload);
rayColors[curPixel] = float4(payload.rayColor, 1.0f); Output yOur results

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

DOING IT YOURSELF V.S. EXISTING APIS

® Embarrassingly parallel # easy to parallelize

> thrive
@SIGGRAPHZI]W

62 LOS ANGELES =+ 28 JULY - 1 AUGUST

DOING IT YOURSELF V.S. EXISTING APIS

® Embarrassingly parallel # easy to parallelize
— Not the same as getting best performance

63

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

DOING IT YOURSELF V.S. EXISTING APIS

® Embarrassingly parallel # easy to parallelize
— Not the same as getting best performance

® Many performance considerations:
— # Intersections, data structures, coherence, caching, load-balancing, SIMD

= thrive
@SIGGRAPHZI]W

64 LOS ANGELES = 28 JULY - 1 AUGUST

DOING IT YOURSELF V.S. EXISTING APIS

® Embarrassingly parallel # easy to parallelize
— Not the same as getting best performance

® Many performance considerations:
— # Intersections, data structures, coherence, caching, load-balancing, SIMD

® APIs can leverage best-known methods behind your back

= thrive
@SIGGRAPHZI]W

65 LOS ANGELES = 28 JULY - 1 AUGUST

DOING IT YOURSELF V.S. EXISTING APIS

® Embarrassingly parallel # easy to parallelize
— Not the same as getting best performance

® Many performance considerations:
— # Intersections, data structures, coherence, caching, load-balancing, SIMD

® APIs can leverage best-known methods behind your back
® APIs allow you to shoot yourself in the foot without knowing it

= thrive
@SIGGRAPHZI]W

66 LOS ANGELES =+ 28 JULY - 1 AUGUST

DOING IT YOURSELF V.S. EXISTING APIS

® Embarrassingly parallel # easy to parallelize
— Not the same as getting best performance

® Many performance considerations:
— # Intersections, data structures, coherence, caching, load-balancing, SIMD

® APIs can leverage best-known methods behind your back
® APIs allow you to shoot yourself in the foot without knowing it
® APIs come at many levels (e.g., use of CUDA without ray tracing API)

= thrive
@SIGGRAPHZI]W

67 LOS ANGELES = 28 JULY - 1 AUGUST

SOME RAY TRACING APIS

® Hardware vendor specific:
— OptiX, Embree, FireRays

® Cross-vendor APIs:
— DirectX Raytracing, Vulkan RT

® Game engine APIs:
— Unity, Unreal

S Different:
— Audiences, learning curves, flexibility, performance, built-in optimizations

= thrive
@SIGGRAPHZI]W

68 LOS ANGELES =+ 28 JULY - 1 AUGUST

TODAY: USING DIRECTX FOR SAMPLE CODE

S Why?
— DirectX widely used API for interactive graphics
— Similar to Vulkan model
— Abstracts some bits tricky for novices’ ray tracers
— Tutorial frameworks for easy experimentation

= thrive
@SIGGRAPHZI]W

69 LOS ANGELES =+ 28 JULY - 1 AUGUST

DIRECTX RAY TRACING RESOURCES

® Some DirectX Ray Tracing tutorials:
— Tutorial framework that hides the C++ APl (http://intro-to-dxr.cwyman.org)
« Easy to get started, not targeted at optimal performance
» Used for my sample code today
 Builds on Falcor for abstraction

— Lower-level tutorial covering DirectX API
* From the “Introduction to DirectX Ray Tracing” Ray Tracing Gems article

— A simple getting started blog post

— Microsoft's DXR samples
A DirectX Raytracing functional specification

> thrive
. @SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

http://intro-to-dxr.cwyman.org/
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/acmarrs/IntroToDXR
https://link.springer.com/chapter/10.1007/978-1-4842-4427-2_3
https://developer.nvidia.com/rtx/raytracing/dxr/DX12-Raytracing-tutorial-Part-1
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

WE’LL FOCUS ON GPU SHADER CODE

S Why?
— Focus on tracing rays, identifying where to trace rays
— Where interesting rendering algorithms mostly live

= thrive
@SIGGRAPHZI]W

71 LOS ANGELES = 28 JULY - 1 AUGUST

WE’LL FOCUS ON GPU SHADER CODE

S Why?
— Focus on tracing rays, identifying where to trace rays
— Where interesting rendering algorithms mostly live

® The CPU has vital infrastructure...
— But it’s largely reusable stuff like asset loaders
— Not interesting (to me) to re-write

= thrive
@SIGGRAPHZI]W

72 LOS ANGELES = 28 JULY - 1 AUGUST

WE’LL FOCUS ON GPU SHADER CODE

S Why?
— Focus on tracing rays, identifying where to trace rays
— Where interesting rendering algorithms mostly live

® The CPU has vital infrastructure...
— But it’s largely reusable stuff like asset loaders
— Not interesting (to me) to re-write

® For parallel GPU ray tracer, CPU code is mostly glue:
— Pass configuration and data to GPU
— Launch GPU processes

= thrive
@SIGGRAPHZI]W

73 LOS ANGELES = 28 JULY - 1 AUGUST

/;_ thrive
/R LA

STRUCTURE OF GPU SHADERS

Specifically DirectX HLSL, but many similarities elsewhere

FIVE TYPES OF RAY TRACING SHADERS

® Ray tracing pipeline split into five shaders:
— Aray generation shader define how to start tracing rays

> thrive
@SIGGRAPHZI]W

75 LOS ANGELES = 28 JULY - 1 AUGUST

FIVE TYPES OF RAY TRACING SHADERS

® Ray tracing pipeline split into five shaders:
— Aray generation shader define how to start tracing rays
— Intersection shader(s) define how rays intersect geometry

76

thrive

@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

FIVE TYPES OF RAY TRACING SHADERS

® Ray tracing pipeline split into five shaders:

— Aray generation shader define how to start tracing rays
— Intersection shader(s) define how rays intersect geometry
— Miss shader(s) shading for when rays miss geometry

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

FIVE TYPES OF RAY TRACING SHADERS

® Ray tracing pipeline split into five shaders:

— Aray generation shader define how to start tracing rays

— Intersection shader(s) define how rays intersect geometry
— Miss shader(s) shading for when rays miss geometry
— Closest-hit shader(s) shading at the intersection point

> thrive
78 L5 siserapwany

FIVE TYPES OF RAY TRACING SHADERS

® Ray tracing pipeline split into five shaders:

79

— Aray generation shader
— Intersection shader(s)
— Miss shader(s)

— Closest-hit shader(s)

— Any-hit shader(s)

define how to start tracing rays

define how rays intersect geometry
shading for when rays miss geometry
shading at the intersection point

run once per hit** (e.g., for transparency)

> thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

FIVE TYPES OF RAY TRACING SHADERS

® Ray tracing pipeline split into five shaders:

— Aray generation shader < Controls other shaders
— Intersection shader(s) — Defines object shapes (one shader per type)

— Miss shader(s)
— Closest-hit shader(s) — Controls per-ray behavior (often many types)
— Any-hit shader(s)

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

80

HOW DO THESE FIT TOGETHER?

81

thrive
SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

HOW DO THESE FIT TOGETHER? [LOGICAL VERSION]

® Loop during ray tracing, testing hits until there’s no more; then shade

~

TraceRay() eleratio 1de Return From
Called aversa TraceRay()
d (€ d (€

K Traversal Loop /

thrive
@SIGGRAPHZI]W

82 ! LOS ANGELES = 28 JULY - 1 AUGUST

HOW DO THESE FIT TOGETHER?

[LOGICAL VERSION]

® Loop during ray tracing, testing hits until there's no more; then shade

TraceRay()
Called

83

~

\ Traversal Loop

e ?

Return From
TraceRay()

Some important details here; learn later for advanced functionality

thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

REALLY SIMPLE GPU RAY TRACER

® Remember:
— Ray generation shader starts work

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

{ gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };
{ float3(e, @, 0) };

RayDesc ray

RayPayload payload
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

84 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

® Remember:
— Ray generation shader starts work

4 Output image buffer
— Communicates results with CPU

85

RWTexture<float4> (gOutTex;

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir

normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

{ float3(e, 0, 0) };

RayPayload payload

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

® Remember:
— Ray generation shader starts work

® Information about scene
— Passed as input from the CPU

86

RWTexture<float4d> gOutTex;

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir

normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©.0f, pixelRayDir, 1le+38f };

{ float3(e, 0, 0) };

RayPayload payload

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, @0, 1, ©, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

struct RayPayload { float3 color; };

® Remember:
— Ray generation shader starts work

® Each ray returns some value
— Return payload is user-defined
— Often, like this one, just a color

® Before tracing, initialize payload [shader(“raygeneration”)]

void MyRayGen() {
uint2 curPixel = DispatchRaysIndex().xy;
float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, le+38f };
RayPayload payload = { float3(e, @, @) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

87 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;
struct RayPayload { float3 color; };

® Remember:
— Ray generation shader starts work

® You write a function here
— Computes per-pixel ray direction ‘ /\L

— Based on location on screen

[shader(“raygeneration”)]
void MyRayGen() {
uint2 curPixel = DispatchRaysIndex().xy;
float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, le+38f };
RayPayload payload = { float3(e, o, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

88 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

struct RayPayload { float3 color; };

® Remember:
— Ray generation shader starts work

® You write a function here

— Computes per-pixel ray direction ‘ /\L

— Based on location on screen

* Setup the ray tO trace [shader(“raygeneration”)]

void MyRayGen() {
uint2 curPixel = DispatchRaysIndex().xy;
float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1le+38f };
RayPayload payload = { float3(e, o, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

89 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

* Remember struct RayPayload { float3 color; };
— Ray generation shader starts work

® You write a function here
— Computes per-pixel ray direction ‘ /\L

— Based on location on screen

® Setup the ray to trace [shader(“raygencration”)]
— Min and max distances to search vor tyavent)

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir

normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

{ float3(e, 0, 0) };

RayPayload payload
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

20 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

® Remember:
— Ray generation shader starts work

® Trace your ray here

91

RWTexture<float4d> gOutTex;

struct RayPayload { float3 color; };

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

RayPayload payload = { float3(e, o, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, @, 1, ©, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

struct RayPayload { float3 color; };

® Remember:
— Ray generation shader starts work

® Trace your ray here
— Scene BVH

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

{ gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };
{ float3(e, @, 0) };

RayDesc ray

RayPayload payload
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

92 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

struct RayPayload { float3 color; };

® Remember:
— Ray generation shader starts work

® Trace your ray here
— Scene BVH
— No special ray behaviors

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

{ float3(e, 0, 0) };

RayPayload payload

TraceRay(gRtScene, RAY FLAG NONE, OxFF, o, 1, ©, ray, payload);

93 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;
struct RayPayload { float3 color; };

® Remember:
— Ray generation shader starts work

® Trace your ray here
— Scene BVH
— No special ray behaviors

— What geometry should we test?
* Bitmask; OxFF — test all geometry [shaden(*raygeneration™)]

void MyRayGen() {
uint2 curPixel = DispatchRaysIndex().xy;
float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, le+38f };
RayPayload payload = { float3(e, o, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

94 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

struct RayPayload { float3 color; };

® Remember:
— Ray generation shader starts work

® Trace your ray here
— Scene BVH
— No special ray behaviors
— What geometry should we test?
* Bitmask; OxFF — test all geometry [shaden(*raygeneration™)]
— Ray and payload from earlier void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;
float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, le+38f };
RayPayload payload = { float3(e, o, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, @, 1, O, ray, payload);

95 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

* Remember struct RayPayload { float3 color; };
— Ray generation shader starts work ~ [shder¢miss]

void MyMiss(inout RayPayload payload) {
payload.color = float3(@, 0, 1);

® Which miss shader to use?
— There’s a list of miss shaders
— Specify index of the one to use

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir

normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

RayPayload payload = { float3(e, o, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, @, 1, ©, ray, payload);

96 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

* Remember struct RayPayload { float3 color; };
— Ray generation shader starts work ~ [shder¢miss]

void MyMiss(inout RayPayload payload) {
payload.color = float3(@, 0, 1);

® Which miss shader to use? '
— There’s a list of miss shaders
— Specify index of the one to use
4 In my tutorials, MyMiss is index O [shader (“raygeneration”)]
— Why? First miss shader | loaded el - btemmtehayetndoc() s
float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));
RayDesc ray = { gCamera.posW, ©.0f, pixelRayDir, le+38f };
RayPayload payload = { float3(@, @, @) };
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, ©, 1, 0, ray, payload);
97 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

® Remember:

— Ray generation shader starts work

® Which hit group to use?

98

— May have 1 any-hit shader
— May have 1 closest-hit shader
— May have 1 intersection shader

RWTexture<float4d> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss™)]

void MyMiss(inout RayPayload payload) {
payload.color = float3(@, 0, 1);

}

[shader(“closesthit™)]
void MyClosestHit(inout RayPayload data,
BuiltinTriangleIntersectAttribs attribs) {
data.color = float3(1, 9, 0);

}

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir

normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

RayPayload payload = { float3(e, o, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, ©, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

* Remember struct RayPayload { float3 color; };
— Ray generation shader starts work ~ [srder¢miss]

void MyMiss(inout RayPayload payload) {

payload.color = float3(@, 0, 1);
}

® Which hit group to use?

[shader(“closesthit™)]

- May ha-ve 1 any'hlt Shader void MyClosestHit(inout RayPayload data,

. May have 1 ClOseSt-hlt Shader BuiltinTriangleIntersectAttribs attribs) {
. . data.color = float3(1, 9, 0);

— May have 1 intersection shader)

[shader(“raygeneration”)]

void MyRayGen() {

® Here, has just one shader) eoiel
— It's index 0 — specified first on load Floats pixelRayDir

RayDesc ray

DispatchRaysIndex().xy;

normalize(getRayDirFromPixelID(curPixel));

{ gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };
{ float3(e, @, 0) };

RayPayload payload
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, ©, 1, 0, ray, payload);

99 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

~ HOW to read at hlgh Ievel struct RayPayload { float3 color; };
— For each pixel determine ray [shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(@, 0, 1);

[shader(“closesthit™)]
void MyClosestHit(inout RayPayload data,
BuiltinTriangleIntersectAttribs attribs) {
data.color = float3(1, 9, 0);

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel

DispatchRaysIndex().xy;
float3 pixelRayDir

normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, 0.0f, pixelRayDir, 1le+38f };

RayPayload payload = { float3(e, @, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

100 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

* HOW to read at hlgh Ievel struct RayPayload { float3 color; };
— For each pixel determine ray [shader (“niss™)]
void MyMiss(inout RayPayload payload) {
o ShOOt the ray payload.color = float3(@, 0, 1);
}

[shader(“closesthit™)]
void MyClosestHit(inout RayPayload data,
BuiltinTriangleIntersectAttribs attribs) {
data.color = float3(1, 9, 0);

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

{ float3(e, 0, 0) };

RayPayload payload
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, @, 1, ©, ray, payload);

101 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

* HOW tO read at hlgh Ievel struct RayPayload { float3 color; };
— For each pixel determine ray SRS,
void MyMiss(inout RayPayload payload) {
- ShOOt the I'ay payload.color = float3(@, 0, 1);
— If it misses? Return blue }

[shader(“closesthit™)]
void MyClosestHit(inout RayPayload data,
BuiltinTriangleIntersectAttribs attribs) {
data.color = float3(1, 9, 0);

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir

normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

{ float3(e, 0, 0) };

RayPayload payload

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

102 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

* HOW to read at hlgh Ievel struct RayPayload { float3 color; };
— For each pixel determine ray [shader(‘iriss")]
void MyMiss(inout RayPayload payload) {
o ShOOt the ray payload.color = float3(@, 0, 1);
— If it misses? Return blue }
— If it hits? Return red [shader (“closesthit”)]

void MyClosestHit(inout RayPayload data,
BuiltinTriangleIntersectAttribs attribs) {
data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

RayPayload payload = { float3(e, o, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

103 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

* HOW to read at hlgh Ievel struct RayPayload { float3 color; };

— For each pixel determine ray [shader (“niss™)]

Shoot the ray void MyMiss(inout RayPayload payload) {
o payload.color = float3(@, 0, 1);
— If it misses? Return blue b
— If it hits? Return red [shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

- Output OUI’ I'eSUHI BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 9, 0);
}

[shader(“raygeneration”)]
void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir

normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

RayPayload payload = { float3(e, o, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

104 outTex[curPixel] = float4(payload.color, 1.0f);

REALLY SIMPLE GPU RAY TRACER

RWTexture<float4d> gOutTex;

}) struct RayPayload { float3 color; };
This code renders this

[shader(“miss™)]
void MyMiss(inout RayPayload payload) {
payload.color = float3(@, 0, 1);

[shader(“closesthit™)]
void MyClosestHit(inout RayPayload data,
BuiltinTriangleIntersectAttribs attribs) {
data.color = float3(1, 9, 0);

For this scene

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray { gCamera.posW, ©0.0f, pixelRayDir, 1le+38f };

{ float3(e, @, @) };

RayPayload payload

TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, o, 1, ©, ray, payload);

105 outTex[curPixel] = float4(payload.color, 1.0f);

WHAT ABOUT A REAL EXAMPLE?

> thrive
@SIGGRAPHZI]W

106 LOS ANGELES = 28 JULY - 1 AUGUST

WHAT ABOUT A REAL EXAMPLE?

® Examples from my DXR tutors: http://intro-to-dxr.cwyman.org
— Click on “code walkthrough”
— Not quite equivalent to any of those, but close

> thrive
@SIGGRAPHZI]W

107 LOS ANGELES = 28 JULY - 1 AUGUST

http://intro-to-dxr.cwyman.org/

WHAT ABOUT A REAL EXAMPLE?

4 How about adding shadows?

> thrive
@SIGGRAPHZI]W

108 LOS ANGELES = 28 JULY - 1 AUGUST

WHAT ABOUT A REAL EXAMPLE?

4 How about adding shadows?
— For each pixel, determine if light visible
— Shoot a ray towards light

thrive
@ SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

HOW DOES THIS WORK?

® Trace a ray from the camera

thrive
@SIGGRAPHZI]W

110 LOS ANGELES = 28 JULY - 1 AUGUST

HOW DOES THIS WORK?

® Trace aray from the camera
— At the shading point (i.e., the closest hit)
— Trace another ray towards the light

thrive
L2 sicoraphns

HOW DOES THIS WORK?

® Trace a ray from the camera
— At the shading point (i.e., the closest hit)
— Trace another ray towards the light
— If it hits, shade the pixel as in shadow
— If it misses, illuminate the pixel by the light

> thrive
1577 SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

A REUSABLE SHADOW RAY

® Encapsulate a shadow ray
— Create shootShadowRay ()
— Can call while shading

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {

= thrive
@SIGGRAPHZI]W

113 LOS ANGELES = 28 JULY - 1 AUGUST

A REUSABLE SHADOW RAY

® Encapsulate a shadow ray

114

— Create a ray
« From some origin
* [n some direction
« Check occlusionsin [tt]

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

1

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {
RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

= thrive
@SIGGRAPHZI]W

LOS ANGELES = 28 JULY - 1 AUGUST

A REUSABLE SHADOW RAY

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

1

® Encapsulate a shadow ray

— Create a ray
* From some origin
* In some direction
* Check occlusions in [t ...t
— Assume shadows are occluded

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {
RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

= thrive
@SIGGRAPHZI]W

115 LOS ANGELES = 28 JULY - 1 AUGUST

A REUSABLE SHADOW RAY

® Encapsulate a shadow ray

116

— Create a ray

* From some origin

* In some direction

* Check occlusions in [t ...t
— Assume shadows are occluded
— Trace the ray

— Return 1 if lit, O otherwise

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

1

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {
RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |
RAY_FLAG_SKIP_CLOSEST HIT_ SHADER;

TraceRay(gRtScene, flags, OxFF, 0, 1, 0, ray, pay);
return pay.visibility;
r thrive
e
7P SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

A REUSABLE SHADOW RAY

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

s
® Encapsulate a shadow ray
— Create a ray
* From some origin
* [n some direction
* Check occlusions in [t ...t
— Assume shadows are occluded
— Trace the ray
— Return 1 if |It, 0 otherwise float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {
® Some shadow ray optimizations aytont oy - oot
— No shading; skip closest hit Wint Flags - RAY FLAGACCEPT FIRST HLT AND.END SEARCH |
— End at any occlusion RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;
* Need if not where TraceRay(gRtScene, flags, OxFF, 0, 1, 6, ray, pay);
return pay.visibility;
thrive

@smsmpuzuw

117 LOS ANGELES = 28 JULY - 1 AUGUST

A REUSABLE SHADOW RAY

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

s
® Miss shader: shader(“nise”)]
—_— \/\/E} r]]iESESEECj_ . void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

— Set visibility to 1.0 }

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {
RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |
RAY_FLAG_SKIP_CLOSEST HIT_ SHADER;

TraceRay(gRtScene, flags, OxFF, @, 1, 0, ray, pay);

return pay.visibility; = thrive
@ SIGGRAPH2019

118 LOS ANGELES = 28 JULY - 1 AUGUST

A REUSABLE SHADOW RAY

® Miss shader:
— We missed...
— Set visibility to 1.0

® Any hit shader:
— AsKks Is occluder transparent?
— If so, ignore this hit

119

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

1

[shader(“miss™)]

void ShadowMiss(inout ShadowPayload pay) {
pay.visibility = 1.0f;

}

[shader(“anyhit”)]
void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {
if (alphaTestFails(attribs))
IgnoreHit();
}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {
RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |
RAY_FLAG_SKIP_CLOSEST HIT_ SHADER;

TraceRay(gRtScene, flags, OxFF, @, 1, 0, ray, pay);

return pay.visibility; = thrive
@ SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

A REUSABLE SHADOW RAY

® Gives reusable shadow rays
— Useful in many contexts

120

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

1

[shader(“miss™)]

void ShadowMiss(inout ShadowPayload pay) {
pay.visibility = 1.0f;

}

[shader(“anyhit”)]
void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {
if (alphaTestFails(attribs))
IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {
RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |
RAY_FLAG_SKIP_CLOSEST HIT_ SHADER;

TraceRay(gRtScene, flags, OxFF, @, 1, 0, ray, pay);

return pay.visibility; = thrive
@ SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

A REUSABLE SHADOW RAY

® Gives reusable shadow rays
— Useful in many contexts

® Like where?
— Maybe: want to shade this point

thrive
@SIGGRAPHZI]W

121 LOS ANGELES = 28 JULY - 1 AUGUST

SHADING A DIFFUSE SURFACE

® To shade, we need:

— Position at hit point
_ Normal at hlt p0|nt float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {

— Material at hit point

= thrive
@SIGGRAPHZI]W

122 LOS ANGELES = 28 JULY - 1 AUGUST

SHADING A DIFFUSE SURFACE

® To shade, we need:
— Position at hit point

' ' float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor
— Normal at hit point ‘ a
. . . // Get information about the light; access your framework’s scene structs
- Matel'la| a.t hlt pOII"I'[float distTolLight = length(gLight.position - hitPos);
float3 dirTolLight = normalize(glLight.position - hitPos);

® Grab light information
— Direction to light
— How far away is it?

= thrive
@SIGGRAPHZI]W

123 LOS ANGELES = 28 JULY - 1 AUGUST

SHADING A DIFFUSE SURFACE

® To shade, we need:
— Position at hit point

_ P\l()rr11éi| Eit f]it F)()if]t float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {
. . . // Get information about the light; access your framework’s scene structs
- Matel'la| a.t hlt pOII"I'[float distTolLight = length(gLight.position - hitPos);
. . . float3 dirTolLight = normalize(glLight.position - hitPos);
® Grab light information
_ [)ifEE(:ti()f] t() Iing]t // Shoot shadow ray with our encapsulated shadow tracing function
float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distTolLight);

— How far away is it?
® Trace our shadow ray

= thrive
@SIGGRAPHZI]W

124 LOS ANGELES = 28 JULY - 1 AUGUST

SHADING A DIFFUSE SURFACE

® To shade, we need:
— Position at hit point

_ P\l()rr11éi| Eit f]it F)()if]t float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {
. . . // Get information about the light; access your framework’s scene structs
- Matel'la| a.t hlt pOII"I'[float distTolLight = length(gLight.position - hitPos);
. . . float3 dirTolLight = normalize(glLight.position - hitPos);
® Grab light information
_ [)ifEE(:ti()f] t() Iing]t // Shoot shadow ray with our encapsulated shadow tracing function
float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distTolLight);

— How far away is it?
// Compute our NdotL term; shoot our shadow ray in selected direction

Q Trace Our ShadOW ray float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0©..1]
® Compute diffuse shading // Return shaded colar

return islit
? (NdotL * glLight.intensity * (difColor / M _PI))
: float3(e, 0, 0);

= thrive
@SIGGRAPHZI]W

125 LOS ANGELES = 28 JULY - 1 AUGUST

SHADING A DIFFUSE SURFACE

® To shade, we need:
— Position at hit point

_ Normal at hlt pOInt float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {
. . . // Get information about the light; access your framework’s scene structs
- Matel'la| a.t hlt pOII"I'[float distTolLight = length(gLight.position - hitPos);
. . . float3 dirTolLight = normalize(glLight.position - hitPos);

® Grab light information

_ DlreCtlon to Ilght // Shoot shadow ray with our encapsulated shadow tracing function

]] float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distTolLight);
— How far away is it?
// Compute our NdotL term; shoot our shadow ray in selected direction
Q Trace Our ShadOW ray float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]
® Compute diffuse shading // Return shaded colar
~ W t I t . I? return isLit
ant more complex material: > (NdotL * glight.intensity * (difColor / M PI))
— Insert different code here ey o 0
}

= thrive
@SIGGRAPHZI]W

126 LOS ANGELES = 28 JULY - 1 AUGUST

USE A SHADE FUNCTION

® Where to use DiffuseShade()?

> thrive
@SIGGRAPHZI]W

127 LOS ANGELES = 28 JULY - 1 AUGUST

USE A SHADE FUNCTION struct IndirectPayload {

float3 color; // will store ray color

1

® Where to use DiffuseShade()? [hertme="

void IndirectMiss(inout IndirectPayload pay) {

® Encapsulate tracing a color ray }

[shader(“anyhit™)]
void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

}

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {
RayDesc ray = { orig, minT, dir, 1.0e+38 };
IndirectPayload pay = { float3(@.ef) };
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, 1, 2, 1, ray, pay);

return pay.color;
128 }

USE A SHADE FUNCTION struct IndirectPayload {

float3 color; // will store ray color

1

® Where to use DiffuseShade()? [hertme="

void IndirectMiss(inout IndirectPayload pay) {

® Encapsulate tracing a color ray

}

— Setup a ray [shader (“anyhit”)]

_ |r]itiEiJiZZEB FEEtLJrr1 (:()Ic)r t() t)lEi(:L(void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {
}

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {
RayDesc ray = { orig, minT, dir, 1.0e+38 };
IndirectPayload pay = { float3(@.ef) };
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, 1, 2, 1, ray, pay);

return pay.color;
129 }

USE A SHADE FUNCTION struct IndirectPayload {

float3 color; // will store ray color

1

® Where to use DiffuseShade()? [hertme="

void IndirectMiss(inout IndirectPayload pay) {

® Encapsulate tracing a color ray
— SetUp a ra-y [shader(“anyhit”)]
. |r]ItIEiJIZZEB FEEtLJrr1 (:()Ic)r t() t)lEi(:L(void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {
— Trace ray, then return its color

}

}

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {
RayDesc ray = { orig, minT, dir, 1.0e+38 };
IndirectPayload pay = { float3(@.ef) };
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, 1, 2, 1, ray, pay);

return pay.color;
130 }

USE A SHADE FUNCTION

® Where to use DiffuseShade()?
® Encapsulate tracing a color ray

131

Setup a ray

Initialize return color to black
Trace ray, then return its color
For every hit, check transparency

struct IndirectPayload {

float3 color; // will store ray color

1

[shader(“miss™)]

void IndirectMiss(inout IndirectPayload pay) {

}

[shader(“anyhit™)]
void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {
if (alphaTestFails(attribs))
IgnoreHit();
}

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {
RayDesc ray = { orig, minT, dir, 1.0e+38 };
IndirectPayload pay = { float3(@.ef) };
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, 1, 2, 1, ray, pay);

return pay.color;

USE A SHADE FUNCTION

® Where to use DiffuseShade()?
® Encapsulate tracing a color ray

132

Setup a ray

Initialize return color to black
Trace ray, then return its color
For every hit, check transparency
On miss, return background

struct IndirectPayload {

float3 color; // will store ray color

1

[shader(“miss™)]
void IndirectMiss(inout IndirectPayload pay) {
pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit™)]
void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {
if (alphaTestFails(attribs))
IgnoreHit();
}

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {
RayDesc ray = { orig, minT, dir, 1.0e+38 };
IndirectPayload pay = { float3(@.ef) };
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, 1, 2, 1, ray, pay);

return pay.color;

USE A SHADE FUNCTION

® Where to use DiffuseShade()?
® Encapsulate tracing a color ray

133

Setup a ray

Initialize return color to black
Trace ray, then return its color
For every hit, check transparency
On miss, return background

On closest hit, shade

struct IndirectPayload {

float3 color; // will store ray color

1

[shader(“miss™)]
void IndirectMiss(inout IndirectPayload pay) {
pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit™)]
void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {
if (alphaTestFails(attribs))
IgnoreHit();
}

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {
ShadingData hit = getHitShadingData(attribs);
pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {
RayDesc ray = { orig, minT, dir, 1.0e+38 };
IndirectPayload pay = { float3(@.ef) };
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, 1, 2, 1, ray, pay);

return pay.color;

PUTTING IT TOGETHER...

== thrive
@SIGGRAPHZI]W

134 LOS ANGELES = 28 JULY - 1 AUGUST

PUTTING IT TOGETHER...

® Go back to ray gen shader
— Similar to simple one we started with

[shader(“raygeneration”)]
void BasicRayTracer() {

uint2 curPixel

DispatchRaysIndex().xy;
float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

float3 pixelColor

shootColorRay(gCamera.posW, pixelRayDir, @.0f);

outTex[curPixel] = float4(pixelColor, 1.0f);

= thrive
@SIGGRAPHZI]W

135 LOS ANGELES = 28 JULY - 1 AUGUST

PUTTING IT TOGETHER...

® Go back to ray gen shader
— Similar to simple one we started with
— Get current pixel, it's ray direction

[shader(“raygeneration”)]
void BasicRayTracer() {
uint2 curPixel = DispatchRaysIndex().xy;
float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

float3 pixelColor = shootColorRay(gCamera.posW, pixelRayDir, ©.0f);

outTex[curPixel] = float4(pixelColor, 1.0f);

= thrive
@SIGGRAPHZI]W

136 LOS ANGELES = 28 JULY - 1 AUGUST

PUTTING IT TOGETHER...

® Go back to ray gen shader
— Similar to simple one we started with
— Get current pixel, it's ray direction
— Shoot a color ray in that direction [shader(“raygeneration”)]

void BasicRayTracer() {
uint2 curPixel = DispatchRaysIndex().xy;
float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

float3 pixelColor = shootColorRay(gCamera.posW, pixelRayDir, ©.0f);

outTex[curPixel] = float4(pixelColor, 1.0f);

= thrive
@SIGGRAPHZI]W

137 LOS ANGELES = 28 JULY - 1 AUGUST

PUTTING IT TOGETHER...

® Go back to ray gen shader
— Similar to simple one we started with
— Get current pixel, it's ray direction

— Shoot a color ray in that direction [shader (“raygeneration™)]
. void BasicRayTracer() {
- OUtpUt the flnal reSUIt uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

float3 pixelColor shootColorRay(gCamera.posW, pixelRayDir, @.0f);

outTex[curPixel] float4(pixelColor, 1.0f);

= thrive
@SIGGRAPHZI]W

138 LOS ANGELES = 28 JULY - 1 AUGUST

DEMO?

® Full code, binaries, and walk through:
— http://intro-to-dxr.cwyman.org

> thrive
124] SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

http://intro-to-dxr.cwyman.org/

/7 thrive
—/ AL

GOING FURTHER

More complex materials, multi-bounce lighting, etc.

GOI NG FU RTHER struct IndirectPayload {

float3 color; // will store ray color

1

® Take code for color ray & tweak Lshader ("ni==")]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor(WorldRayDirection());
}

[shader(“anyhit™)]
void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {
if (alphaTestFails(attribs))
IgnoreHit();
}

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {
ShadingData hit = getHitShadingData(attribs);
pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {
RayDesc ray = { orig, minT, dir, 1.0e+38 };
IndirectPayload pay = { float3(@.ef) };
TraceRay(gRtScene, RAY_FLAG_NONE, OxFF, 1, 2, 1, ray, pay);

return pay.color;
141 ¥

GOING FURTHER

® Take code for color ray & tweak
— Mostly here:

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {
ShadingData hit = getHitShadingData(attribs);
pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

142

GOING FURTHER

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {

~ Want glObal Illumlnatlonf) ShadingData hit = getHitShadingData(attribs);

float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);

143

GOING FURTHER

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

~ Want glObal Illumlnatlonf) ShadingData hit = getHitShadingData(attribs);
] float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);
— Add a random outgoing ray
— Recursive call: shootColorRay() s i ol
—_ Account for BRDF float3 indirectlLight
— Add contributions together

float3 bounceDir = selectRandomDirection();

shootColorRay(hit.pos, bouncDir);

DiffuseIndirect(bounceDir, indirectColor);

pay.color = directLight + indirectLight;

® A basic path tracer

144

GOING FURTHER

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {

~ Want glObal Illumlnatlonf) ShadingData hit = getHitShadingData(attribs);
] float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);
— Add a random outgoing ray
o RecurSIVe Ca” ShOOtCOlOPRay() float3 indirectColor = shootColorRay(hit.pos, bouncDir);
—_ Account for BRDF float3 indirectlLight = DiffuseIndirect(bounceDir, indirectColor);
— Add contributions together

float3 bounceDir = selectRandomDirection();

pay.color = directLight + indirectLight;

® A basic path tracer
— Usually encapsulate BRDF
— Direct light done with BRDF::evaluate()

145

GOING FURTHER

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,
BuiltinTriangleIntersectAttribs attribs) {

~ Want glObal Illumlnatlonf) ShadingData hit = getHitShadingData(attribs);
] float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);
— Add a random outgoing ray
o RecurSIVe Ca” ShOOtCOlOPRay() float3 indirectColor = shootColorRay(hit.pos, bouncDir);
—_ Account for BRDF float3 indirectlLight = DiffuseIndirect(bounceDir, indirectColor);
— Add contributions together

float3 bounceDir = selectRandomDirection();

pay.color = directLight + indirectLight;

® A basic path tracer
— Usually encapsulate BRDF
— Direct light done with BRDF: :evaluate()

— Indirect done with BRDF: :scatter()
» Also sometimes called sample()

146

GOING FURTHER

[shader(“closesthit™)]
void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

~ Want glObal Illumlnatlonf) ShadingData hit = getHitShadingData(attribs);
] float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);
— Add a random outgoing ray
o RecurSIVe Ca” ShOOtCOlOPRay() float3 indirectColor = shootColorRay(hit.pos, bouncDir);
—_ Account for BRDF float3 indirectlLight = DiffuseIndirect(bounceDir, indirectColor);
— Add contributions together

float3 bounceDir = selectRandomDirection();

pay.color = directLight + indirectLight;

® A basic path tracer
— Usually encapsulate BRDF
— Direct light done with BRDF: :evaluate()

— Indirect done with BRDF: :scatter()
» Also sometimes called sample()

® Makes it easy to plug in new materials

147

MANY LIGHTS?

148

MANY LIGHTS?

® Don't just evaluate BRDF for one light

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {
// Get information about the light; access your framework’s scene structs

float distTolLight

length(gLight.position - hitPos);

float3 dirTolLight normalize(glLight.position - hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distTolLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color
return isLit
? (NdotL * glLight.intensity * (difColor / M_PI))
149 : float3(o, 0, 0);

MANY LIGHTS?

® Don't just evaluate BRDF for one light
— Loop per light

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {
// Get information about the light; access your framework’s scene structs

float distTolight

length(gLight.position - hitPos);

float3 dirTolLight normalize(glLight.position - hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float islLit = shootShadowRay(hitPos, dirTolLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color
return isLit
? (NdotL * glLight.intensity * (difColor / M_PI))
150 : float3(@, 0, 0);

MANY LIGHTS?

® Don't just evaluate BRDF for one light
— Loop per light

® Thousands of lights? Becomes expensive

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {
// Get information about the light; access your framework’s scene structs
float distTolLight = length(gLight.position - hitPos);
float3 dirTolLight = normalize(glLight.position - hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float islLit = shootShadowRay(hitPos, dirTolLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color
return isLit
? (NdotL * glLight.intensity * (difColor / M_PI))
151 : float3(@, 0, 0);

MANY LIGHTS?

® Don't just evaluate BRDF for one light
— Loop per light

® Thousands of lights? Becomes expensive
A What if: emissive triangles, spheres, bunnies?

152

MANY LIGHTS?

® Don't just evaluate BRDF for one light
— Loop per light

® Thousands of lights? Becomes expensive
A What if: emissive triangles, spheres, bunnies?

® Need to sample your lights
— Pick a random location on some light
— Evaluate direct lighting from that point

153

NAIVE LIGHT SAMPLING:

® Lots of point lights (e.g., N points):
— Randomly pick number in [1...N], use that light for shading

154

NAIVE LIGHT SAMPLING:

® Lots of point lights (e.g., N points):
— Randomly pick number in [1...N], use that light for shading

® One surface light:
— Pick a point uniformly over the surface
— E.g., on a quad, pick both (u, v) randomly in [0...1]

155

NAIVE LIGHT SAMPLING:

® Lots of point lights (e.g., N points):
— Randomly pick number in [1...N], use that light for shading

® One surface light:
— Pick a point uniformly over the surface
— E.g., on a quad, pick both (u, v) randomly in [0...1]

® For many emissive surfaces (e.g., N surfaces):
— First pick number in [1...N], then pick random point on surface

156

NAIVE LIGHT SAMPLING:

® Lots of point lights (e.g., N points):
— Randomly pick number in [1...N], use that light for shading

® One surface light:
— Pick a point uniformly over the surface
— E.g., on a quad, pick both (u, v) randomly in [0...1]

® For many emissive surfaces (e.g., N surfaces):
— First pick number in [1...N], then pick random point on surface
— Alternatively weight choice of light based on area

157

thrive
@/ SIGGRAPH2019

LOS ANGELES = 28 JULY - 1 AUGUST

UP NEXT

Morgan McGuire

With more on materials, sampling, and how to think about
GPU ray tracing performance

QUESTIONS?

E-mail: cwyman@nvidia.com
Twitter: @ _cwyman

Code: http://intro-to-dxr.cwyman.org

mailto:cwyman@nvidia.com
http://intro-to-dxr.cwyman.org/

