
Introduction to Real-time Ray Tracing Part 2

GOING FAST: PARALLELIZING

YOUR RAY TRACER

Chris Wyman

Principal Research Scientist

NVIDIA

1

SOME PRELIMINARIES
Ideas needed before GPU ray tracing

YOU JUST GOT THE BASICS

3

YOU JUST GOT THE BASICS

But additional features expected for GPU rendering

4

YOU JUST GOT THE BASICS

But additional features expected for GPU rendering

— Typically, increased complexity; not just a few primitives

5

YOU JUST GOT THE BASICS

But additional features expected for GPU rendering

— Typically, increased complexity; not just a few primitives

— Render triangle meshes

— Just collections of triangles approximating 3D shapes

— Easy enough; intersect each triangle in turn

6

YOU JUST GOT THE BASICS

But additional features expected for GPU rendering

— Typically, increased complexity; not just a few primitives

— Render triangle meshes

— Just collections of triangles approximating 3D shapes

— Easy enough; intersect each triangle in turn

— Mesh files usually contain material information

— Often small-scale detail stored in textures

7

HOW TO HANDLE MATERIALS AND TEXTURES?

8

HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary: Did we hit? Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color

9

HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary: Did we hit? Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color

• Texture coordinates

• Material parameters

• Et cetera

10

HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary: Did we hit? Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color

• Texture coordinates

• Material parameters

• Et cetera

11

Our texture:

HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary: Did we hit? Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color

• Texture coordinates

• Material parameters

• Et cetera

12

(0,0) (1,0)

(0,1)

Triangle vertices have:

texture coordinates

HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary: Did we hit? Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color

• Texture coordinates

• Material parameters

• Et cetera

13

(0,0) (1,0)

(0,1)

Triangle vertices have:

texture coordinates

Coordinate here:

Interpolates coordinates at vertices

HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary: Did we hit? Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color

• Texture coordinates

• Material parameters

• Et cetera

14

(0,0) (1,0)

(0,1)

Triangle vertices have:

texture coordinates

Coordinate here:

Interpolates coordinates at vertices

Same interpolation as position,

normal, color, etc.

Use coord to index in the image array

HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary: Did we hit? Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color

• Texture coordinates

• Material parameters

• Et cetera

— All attribute interpolation work the same way

15

BASICS OF OPTIMIZATION
Before jumping to GPU, take some baby steps

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

17

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

18

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

19

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

20

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

• Repeat

21

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

• Repeat

22

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

• Repeat

23

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

• Repeat

24

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

• Repeat

— How do you know when you’re done?

25

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

• Repeat

— How do you know when you’re done?

• When you’ve tested every triangle?

26

BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

• Repeat

— How do you know when you’re done?

• When you’ve tested every triangle?

• Very expensive…

• Every ray could test, 1 million (or more) triangles

27

WHAT’S OUR COMPUTATION BUDGET?

28

WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

29

WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

— We need 125 million pixels per second!

30

WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

— We need 125 million pixels per second!

With a ~10 TFLOP state-of-the-art GPU

— If tracing one ray per pixel…

— About 80,000 flops per ray

31

WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

— We need 125 million pixels per second!

With a ~10 TFLOP state-of-the-art GPU

— If tracing one ray per pixel…

— About 80,000 flops per ray

An optimized triangle intersection: ~10 flops

— Can afford at most 8,000 intersections per ray

32

WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

— We need 125 million pixels per second!

With a ~10 TFLOP state-of-the-art GPU

— If tracing one ray per pixel…

— About 80,000 flops per ray

An optimized triangle intersection: ~10 flops

— Can afford at most 8,000 intersections per ray

Conclusion: Don’t test every triangle!

33

KEY PRINCIPAL TO OPTIMIZATION:

Make the common case fast

34

KEY PRINCIPAL TO OPTIMIZATION:

Make the common case fast

Common case in ray tracing?

— Ray does not intersect a triangle

35

KEY PRINCIPAL TO OPTIMIZATION:

Make the common case fast

Common case in ray tracing?

— Ray does not intersect a triangle

— For any mesh, ray typically misses mesh

36

KEY PRINCIPAL TO OPTIMIZATION:

Make the common case fast

Common case in ray tracing?

— Ray does not intersect a triangle

— For any mesh, ray typically misses mesh

Perhaps:

— First intersect a mesh bounding box

37

KEY PRINCIPAL TO OPTIMIZATION:

Make the common case fast

Common case in ray tracing?

— Ray does not intersect a triangle

— For any mesh, ray typically misses mesh

Perhaps:

— First intersect a mesh bounding box

— Most rays avoid testing thousands of triangles

— But, extra box test when hit bunny

38

KEY PRINCIPAL TO OPTIMIZATION:

39

What if you have thousands of bunnies?

KEY PRINCIPAL TO OPTIMIZATION:

40

What if you have thousands of bunnies?

KEY PRINCIPAL TO OPTIMIZATION:

41

What if you have thousands of bunnies?

— Common case: Ray misses most bunnies

KEY PRINCIPAL TO OPTIMIZATION:

42

What if you have thousands of bunnies?

— Common case: Ray misses most bunnies

— Can skip testing this half…

KEY PRINCIPAL TO OPTIMIZATION:

43

What if you have thousands of bunnies?

— Common case: Ray misses most bunnies

— Can skip testing this half… and this quarter… with a few more boxes

KEY PRINCIPAL TO OPTIMIZATION:

44

Build a tree of bounding boxes

— Known as a “bounding volume hierarchy” or BVH

KEY PRINCIPAL TO OPTIMIZATION:

45

Build a tree of bounding boxes

— Known as a “bounding volume hierarchy” or BVH

When using a principled tree build

— Reduces number of required intersections

— From O(N) to O(log N)

KEY PRINCIPAL TO OPTIMIZATION:

46

Build a tree of bounding boxes

— Known as a “bounding volume hierarchy” or BVH

When using a principled tree build

— Reduces number of required intersections

— From O(N) to O(log N)

With a binary tree, 1 million ray-triangle tests becomes:

— Around 20 ray-box tests

— A few ray-triangle tests in leaf nodes

KEY PRINCIPAL TO OPTIMIZATION:

47

Production ray tracers always use some acceleration structure

KEY PRINCIPAL TO OPTIMIZATION:

48

Production ray tracers always use some acceleration structure

But, which structure? How do you best build it?

— Literally decades of research

KEY PRINCIPAL TO OPTIMIZATION:

49

Production ray tracers always use some acceleration structure

But, which structure? How do you best build it?

— Literally decades of research

— Continuing to today (e.g., “Wide BVH Traversal with a Short Stack,” Vaidyanathan et al. 2019)

KEY PRINCIPAL TO OPTIMIZATION:

50

Production ray tracers always use some acceleration structure

But, which structure? How do you best build it?

— Literally decades of research

— Continuing to today (e.g., “Wide BVH Traversal with a Short Stack,” Vaidyanathan et al. 2019)

When starting real-time ray tracing, best bet:

— Use someone else’s code

— Quality of your BVH easily affects performance by 2x, 3x, or >10x

• Varies per scene!

— Luckily most APIs will build structure

GOING PARALLEL
Coding for massively parallel GPUs

RAY TRACING: EMBARRASSINGLY PARALLEL

Defined: Little to no effort needed to separate into parallel tasks

52

RAY TRACING: EMBARRASSINGLY PARALLEL

Defined: Little to no effort needed to separate into parallel tasks

Rendering often a prototypical example of embarrassingly parallel

— One obvious way: assign one CPU or GPU core per pixel

53

RAY TRACING: EMBARRASSINGLY PARALLEL

On CPU, call fork() or spawn() to create multiple threads

— Each thread works on separate pixels

— Wait for all threads to complete

— Some threads take longer → may need load balancing

54

RAY TRACING: EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index

55

RAY TRACING: EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index

56

// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(..., ray, payload);

rayColors[curPixel] = float4(payload.rayColor, 1.0f);

}

RAY TRACING: EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index

57

// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(..., ray, payload);

rayColors[curPixel] = float4(payload.rayColor, 1.0f);

}

Identify the current pixel

RAY TRACING: EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index

58

// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(..., ray, payload);

rayColors[curPixel] = float4(payload.rayColor, 1.0f);

}

Setup the ray

RAY TRACING: EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index

59

// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(..., ray, payload);

rayColors[curPixel] = float4(payload.rayColor, 1.0f);

}

Initialize ray return values

RAY TRACING: EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index

60

// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(..., ray, payload);

rayColors[curPixel] = float4(payload.rayColor, 1.0f);

}

Trace your ray

RAY TRACING: EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index

61

// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(..., ray, payload);

rayColors[curPixel] = float4(payload.rayColor, 1.0f);

}

Output your results

DOING IT YOURSELF V.S. EXISTING APIS

Embarrassingly parallel ≠ easy to parallelize

62

DOING IT YOURSELF V.S. EXISTING APIS

Embarrassingly parallel ≠ easy to parallelize

— Not the same as getting best performance

63

DOING IT YOURSELF V.S. EXISTING APIS

Embarrassingly parallel ≠ easy to parallelize

— Not the same as getting best performance

Many performance considerations:

— # intersections, data structures, coherence, caching, load-balancing, SIMD

64

DOING IT YOURSELF V.S. EXISTING APIS

Embarrassingly parallel ≠ easy to parallelize

— Not the same as getting best performance

Many performance considerations:

— # intersections, data structures, coherence, caching, load-balancing, SIMD

APIs can leverage best-known methods behind your back

65

DOING IT YOURSELF V.S. EXISTING APIS

Embarrassingly parallel ≠ easy to parallelize

— Not the same as getting best performance

Many performance considerations:

— # intersections, data structures, coherence, caching, load-balancing, SIMD

APIs can leverage best-known methods behind your back

APIs allow you to shoot yourself in the foot without knowing it

66

DOING IT YOURSELF V.S. EXISTING APIS

Embarrassingly parallel ≠ easy to parallelize

— Not the same as getting best performance

Many performance considerations:

— # intersections, data structures, coherence, caching, load-balancing, SIMD

APIs can leverage best-known methods behind your back

APIs allow you to shoot yourself in the foot without knowing it

APIs come at many levels (e.g., use of CUDA without ray tracing API)

67

SOME RAY TRACING APIS

Hardware vendor specific:

— OptiX, Embree, FireRays

Cross-vendor APIs:

— DirectX Raytracing, Vulkan RT

Game engine APIs:

— Unity, Unreal

Different:

— Audiences, learning curves, flexibility, performance, built-in optimizations

68

TODAY: USING DIRECTX FOR SAMPLE CODE

Why?

— DirectX widely used API for interactive graphics

— Similar to Vulkan model

— Abstracts some bits tricky for novices’ ray tracers

— Tutorial frameworks for easy experimentation

69

DIRECTX RAY TRACING RESOURCES

Some DirectX Ray Tracing tutorials:

— Tutorial framework that hides the C++ API (http://intro-to-dxr.cwyman.org)

• Easy to get started, not targeted at optimal performance

• Used for my sample code today

• Builds on Falcor for abstraction

— Lower-level tutorial covering DirectX API

• From the “Introduction to DirectX Ray Tracing” Ray Tracing Gems article

— A simple getting started blog post

— Microsoft’s DXR samples

• A DirectX Raytracing functional specification

70

http://intro-to-dxr.cwyman.org/
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/acmarrs/IntroToDXR
https://link.springer.com/chapter/10.1007/978-1-4842-4427-2_3
https://developer.nvidia.com/rtx/raytracing/dxr/DX12-Raytracing-tutorial-Part-1
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

WE’LL FOCUS ON GPU SHADER CODE

Why?

— Focus on tracing rays, identifying where to trace rays

— Where interesting rendering algorithms mostly live

71

WE’LL FOCUS ON GPU SHADER CODE

Why?

— Focus on tracing rays, identifying where to trace rays

— Where interesting rendering algorithms mostly live

The CPU has vital infrastructure…

— But it’s largely reusable stuff like asset loaders

— Not interesting (to me) to re-write

72

WE’LL FOCUS ON GPU SHADER CODE

Why?

— Focus on tracing rays, identifying where to trace rays

— Where interesting rendering algorithms mostly live

The CPU has vital infrastructure…

— But it’s largely reusable stuff like asset loaders

— Not interesting (to me) to re-write

For parallel GPU ray tracer, CPU code is mostly glue:

— Pass configuration and data to GPU

— Launch GPU processes

73

STRUCTURE OF GPU SHADERS
Specifically DirectX HLSL, but many similarities elsewhere

FIVE TYPES OF RAY TRACING SHADERS

75

Ray tracing pipeline split into five shaders:

— A ray generation shader define how to start tracing rays

FIVE TYPES OF RAY TRACING SHADERS

76

Ray tracing pipeline split into five shaders:

— A ray generation shader define how to start tracing rays

— Intersection shader(s) define how rays intersect geometry

FIVE TYPES OF RAY TRACING SHADERS

77

Ray tracing pipeline split into five shaders:

— A ray generation shader define how to start tracing rays

— Intersection shader(s) define how rays intersect geometry

— Miss shader(s) shading for when rays miss geometry

FIVE TYPES OF RAY TRACING SHADERS

78

Ray tracing pipeline split into five shaders:

— A ray generation shader define how to start tracing rays

— Intersection shader(s) define how rays intersect geometry

— Miss shader(s) shading for when rays miss geometry

— Closest-hit shader(s) shading at the intersection point

FIVE TYPES OF RAY TRACING SHADERS

79

Ray tracing pipeline split into five shaders:

— A ray generation shader define how to start tracing rays

— Intersection shader(s) define how rays intersect geometry

— Miss shader(s) shading for when rays miss geometry

— Closest-hit shader(s) shading at the intersection point

— Any-hit shader(s) run once per hit** (e.g., for transparency)

FIVE TYPES OF RAY TRACING SHADERS

80

Ray tracing pipeline split into five shaders:

— A ray generation shader define how to start tracing rays

— Intersection shader(s) define how rays intersect geometry

— Miss shader(s) shading for when rays miss geometry

— Closest-hit shader(s) shading at the intersection point

— Any-hit shader(s) run once per hit** (e.g., for transparency)

← Controls other shaders

← Defines object shapes (one shader per type)

← Controls per-ray behavior (often many types)

HOW DO THESE FIT TOGETHER? [EYE CHART VERSION]

81

Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

Miss
Shader

Acceleration
Traversal

No (additional) potential hits

Intersection
Shader

Closest
Hit?

No intersection

Not closest

Any-Hit
Shader

This is closest hit

Is
Opaque?

Ignore hit
(transparent)

Accept hit

Yes

Update
Closest
Hit Data

Have
Hit?

Yes

No

No

HOW DO THESE FIT TOGETHER? [LOGICAL VERSION]

82

Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

Miss
Shader

Acceleration
Traversal

Intersection
Shader

Any-Hit
Shader

Loop during ray tracing, testing hits until there’s no more; then shade

HOW DO THESE FIT TOGETHER? [LOGICAL VERSION]

83

Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

Miss
Shader

Acceleration
Traversal

Intersection
Shader

Any-Hit
Shader

Loop during ray tracing, testing hits until there’s no more; then shade

Some important details here; learn later for advanced functionality

REALLY SIMPLE GPU RAY TRACER

84

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

REALLY SIMPLE GPU RAY TRACER

85

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Output image buffer

— Communicates results with CPU

REALLY SIMPLE GPU RAY TRACER

86

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Information about scene

— Passed as input from the CPU

REALLY SIMPLE GPU RAY TRACER

87

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Each ray returns some value

— Return payload is user-defined

— Often, like this one, just a color

Before tracing, initialize payload

REALLY SIMPLE GPU RAY TRACER

88

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

You write a function here

— Computes per-pixel ray direction

— Based on location on screen

REALLY SIMPLE GPU RAY TRACER

89

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

You write a function here

— Computes per-pixel ray direction

— Based on location on screen

Setup the ray to trace

REALLY SIMPLE GPU RAY TRACER

90

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

You write a function here

— Computes per-pixel ray direction

— Based on location on screen

Setup the ray to trace

— Min and max distances to search

REALLY SIMPLE GPU RAY TRACER

91

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Trace your ray here

REALLY SIMPLE GPU RAY TRACER

92

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Trace your ray here

— Scene BVH

REALLY SIMPLE GPU RAY TRACER

93

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Trace your ray here

— Scene BVH

— No special ray behaviors

REALLY SIMPLE GPU RAY TRACER

94

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Trace your ray here

— Scene BVH

— No special ray behaviors

— What geometry should we test?

• Bitmask; 0xFF → test all geometry

REALLY SIMPLE GPU RAY TRACER

95

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Trace your ray here

— Scene BVH

— No special ray behaviors

— What geometry should we test?

• Bitmask; 0xFF → test all geometry

— Ray and payload from earlier

REALLY SIMPLE GPU RAY TRACER

96

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Which miss shader to use?

— There’s a list of miss shaders

— Specify index of the one to use

REALLY SIMPLE GPU RAY TRACER

97

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Which miss shader to use?

— There’s a list of miss shaders

— Specify index of the one to use

In my tutorials, MyMiss is index 0

— Why? First miss shader I loaded

REALLY SIMPLE GPU RAY TRACER

98

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Which hit group to use?

— May have 1 any-hit shader

— May have 1 closest-hit shader

— May have 1 intersection shader

REALLY SIMPLE GPU RAY TRACER

99

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Remember:

— Ray generation shader starts work

Which hit group to use?

— May have 1 any-hit shader

— May have 1 closest-hit shader

— May have 1 intersection shader

Here, has just one shader

— It’s index 0 → specified first on load

REALLY SIMPLE GPU RAY TRACER

100

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

How to read at high level:

— For each pixel determine ray

REALLY SIMPLE GPU RAY TRACER

101

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

How to read at high level:

— For each pixel determine ray

— Shoot the ray

REALLY SIMPLE GPU RAY TRACER

102

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

How to read at high level:

— For each pixel determine ray

— Shoot the ray

— If it misses? Return blue

REALLY SIMPLE GPU RAY TRACER

103

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

How to read at high level:

— For each pixel determine ray

— Shoot the ray

— If it misses? Return blue

— If it hits? Return red

REALLY SIMPLE GPU RAY TRACER

104

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

How to read at high level:

— For each pixel determine ray

— Shoot the ray

— If it misses? Return blue

— If it hits? Return red

— Output our result

REALLY SIMPLE GPU RAY TRACER

105

RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload) {

payload.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data,

BuiltinTriangleIntersectAttribs attribs) {

data.color = float3(1, 0, 0);

}

[shader(“raygeneration”)]

void MyRayGen() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

RayDesc ray = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };

RayPayload payload = { float3(0, 0, 0) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

For this scene

This code renders this

WHAT ABOUT A REAL EXAMPLE?

106

WHAT ABOUT A REAL EXAMPLE?

107

Examples from my DXR tutors: http://intro-to-dxr.cwyman.org

— Click on “code walkthrough”

— Not quite equivalent to any of those, but close

http://intro-to-dxr.cwyman.org/

WHAT ABOUT A REAL EXAMPLE?

108

How about adding shadows?

WHAT ABOUT A REAL EXAMPLE?

109

How about adding shadows?

— For each pixel, determine if light visible

— Shoot a ray towards light

×

HOW DOES THIS WORK?

110

Trace a ray from the camera

HOW DOES THIS WORK?

111

Trace a ray from the camera

— At the shading point (i.e., the closest hit)

— Trace another ray towards the light

?

HOW DOES THIS WORK?

112

Trace a ray from the camera

— At the shading point (i.e., the closest hit)

— Trace another ray towards the light

— If it hits, shade the pixel as in shadow

— If it misses, illuminate the pixel by the light

?

A REUSABLE SHADOW RAY

113

Encapsulate a shadow ray

— Create shootShadowRay()

— Can call while shading

...

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay(gRtScene, flags, 0xFF, 0, 1, 0, ray, pay);

return pay.visibility;

}

...

A REUSABLE SHADOW RAY

114

Encapsulate a shadow ray

— Create a ray

• From some origin

• In some direction

• Check occlusions in [tmin…tmax]

...

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay(gRtScene, flags, 0xFF, 0, 1, 0, ray, pay);

return pay.visibility;

}

...

A REUSABLE SHADOW RAY

115

Encapsulate a shadow ray

— Create a ray

• From some origin

• In some direction

• Check occlusions in [tmin…tmax]

— Assume shadows are occluded

...

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay(gRtScene, flags, 0xFF, 0, 1, 0, ray, pay);

return pay.visibility;

}

...

A REUSABLE SHADOW RAY

116

Encapsulate a shadow ray

— Create a ray

• From some origin

• In some direction

• Check occlusions in [tmin…tmax]

— Assume shadows are occluded

— Trace the ray

— Return 1 if lit, 0 otherwise

...

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay(gRtScene, flags, 0xFF, 0, 1, 0, ray, pay);

return pay.visibility;

}

...

A REUSABLE SHADOW RAY

117

Encapsulate a shadow ray

— Create a ray

• From some origin

• In some direction

• Check occlusions in [tmin…tmax]

— Assume shadows are occluded

— Trace the ray

— Return 1 if lit, 0 otherwise

Some shadow ray optimizations

— No shading; skip closest hit

— End at any occlusion

• Need if not where

...

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay(gRtScene, flags, 0xFF, 0, 1, 0, ray, pay);

return pay.visibility;

}

...

A REUSABLE SHADOW RAY

118

Miss shader:

— We missed…

— Set visibility to 1.0

...

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay(gRtScene, flags, 0xFF, 0, 1, 0, ray, pay);

return pay.visibility;

}

...

A REUSABLE SHADOW RAY

119

Miss shader:

— We missed…

— Set visibility to 1.0

Any hit shader:

— Asks is occluder transparent?

— If so, ignore this hit

...

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay(gRtScene, flags, 0xFF, 0, 1, 0, ray, pay);

return pay.visibility;

}

...

A REUSABLE SHADOW RAY

120

Gives reusable shadow rays

— Useful in many contexts

...

struct ShadowPayload {

float visibility; // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT) {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay(gRtScene, flags, 0xFF, 0, 1, 0, ray, pay);

return pay.visibility;

}

...

A REUSABLE SHADOW RAY

121

Gives reusable shadow rays

— Useful in many contexts

Like where?

— Maybe: want to shade this point

?

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {

// Get information about the light; access your framework’s scene structs

float distToLight = length(gLight.position – hitPos);

float3 dirToLight = normalize(gLight.position – hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI))

: float3(0, 0, 0);

}

SHADING A DIFFUSE SURFACE

122

To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {

// Get information about the light; access your framework’s scene structs

float distToLight = length(gLight.position – hitPos);

float3 dirToLight = normalize(gLight.position – hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI))

: float3(0, 0, 0);

}

SHADING A DIFFUSE SURFACE

123

To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point

Grab light information

— Direction to light

— How far away is it?

SHADING A DIFFUSE SURFACE

124

To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point

Grab light information

— Direction to light

— How far away is it?

Trace our shadow ray

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {

// Get information about the light; access your framework’s scene structs

float distToLight = length(gLight.position – hitPos);

float3 dirToLight = normalize(gLight.position – hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI))

: float3(0, 0, 0);

}

SHADING A DIFFUSE SURFACE

125

To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point

Grab light information

— Direction to light

— How far away is it?

Trace our shadow ray

Compute diffuse shading

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {

// Get information about the light; access your framework’s scene structs

float distToLight = length(gLight.position – hitPos);

float3 dirToLight = normalize(gLight.position – hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI))

: float3(0, 0, 0);

}

SHADING A DIFFUSE SURFACE

126

To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point

Grab light information

— Direction to light

— How far away is it?

Trace our shadow ray

Compute diffuse shading

Want more complex material?

— Insert different code here

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {

// Get information about the light; access your framework’s scene structs

float distToLight = length(gLight.position – hitPos);

float3 dirToLight = normalize(gLight.position – hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI))

: float3(0, 0, 0);

}

USE A SHADE FUNCTION

127

Where to use DiffuseShade()?

USE A SHADE FUNCTION

128

Where to use DiffuseShade()?

Encapsulate tracing a color ray

struct IndirectPayload {

float3 color; // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3(0.0f) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay);

return pay.color;

}

USE A SHADE FUNCTION

129

Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

struct IndirectPayload {

float3 color; // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3(0.0f) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay);

return pay.color;

}

USE A SHADE FUNCTION

130

Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

— Trace ray, then return its color

struct IndirectPayload {

float3 color; // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3(0.0f) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay);

return pay.color;

}

USE A SHADE FUNCTION

131

Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

— Trace ray, then return its color

— For every hit, check transparency

struct IndirectPayload {

float3 color; // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3(0.0f) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay);

return pay.color;

}

USE A SHADE FUNCTION

132

Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

— Trace ray, then return its color

— For every hit, check transparency

— On miss, return background

struct IndirectPayload {

float3 color; // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3(0.0f) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay);

return pay.color;

}

USE A SHADE FUNCTION

133

Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

— Trace ray, then return its color

— For every hit, check transparency

— On miss, return background

— On closest hit, shade

struct IndirectPayload {

float3 color; // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3(0.0f) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay);

return pay.color;

}

PUTTING IT TOGETHER…

134

PUTTING IT TOGETHER…

135

Go back to ray gen shader

— Similar to simple one we started with

[shader(“raygeneration”)]

void BasicRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

float3 pixelColor = shootColorRay(gCamera.posW, pixelRayDir, 0.0f);

outTex[curPixel] = float4(pixelColor, 1.0f);

}

PUTTING IT TOGETHER…

136

Go back to ray gen shader

— Similar to simple one we started with

— Get current pixel, it’s ray direction
[shader(“raygeneration”)]

void BasicRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

float3 pixelColor = shootColorRay(gCamera.posW, pixelRayDir, 0.0f);

outTex[curPixel] = float4(pixelColor, 1.0f);

}

PUTTING IT TOGETHER…

137

Go back to ray gen shader

— Similar to simple one we started with

— Get current pixel, it’s ray direction

— Shoot a color ray in that direction [shader(“raygeneration”)]

void BasicRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

float3 pixelColor = shootColorRay(gCamera.posW, pixelRayDir, 0.0f);

outTex[curPixel] = float4(pixelColor, 1.0f);

}

PUTTING IT TOGETHER…

138

Go back to ray gen shader

— Similar to simple one we started with

— Get current pixel, it’s ray direction

— Shoot a color ray in that direction

— Output the final result

[shader(“raygeneration”)]

void BasicRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize(getRayDirFromPixelID(curPixel));

float3 pixelColor = shootColorRay(gCamera.posW, pixelRayDir, 0.0f);

outTex[curPixel] = float4(pixelColor, 1.0f);

}

DEMO?

139

Full code, binaries, and walk through:

— http://intro-to-dxr.cwyman.org

http://intro-to-dxr.cwyman.org/

GOING FURTHER
More complex materials, multi-bounce lighting, etc.

GOING FURTHER

141

Take code for color ray & tweak

struct IndirectPayload {

float3 color; // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3(0.0f) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay);

return pay.color;

}

GOING FURTHER

142

Take code for color ray & tweak

— Mostly here:

struct IndirectPayload {

float3 color; // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor(WorldRayDirection());

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

pay.color = DiffuseShade(hit.pos, hit.norm, hit.difColor);

}

float3 shootColorRay(float3 orig, float3 dir, float minT) {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3(0.0f) };

TraceRay(gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay);

return pay.color;

}

GOING FURTHER

143

Want global illumination?

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay(hit.pos, bouncDir);

float3 indirectLight = DiffuseIndirect(bounceDir, indirectColor);

pay.color = directLight + indirectLight;

}

GOING FURTHER

144

Want global illumination?

— Add a random outgoing ray

— Recursive call: shootColorRay()

— Account for BRDF

— Add contributions together

A basic path tracer

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay(hit.pos, bouncDir);

float3 indirectLight = DiffuseIndirect(bounceDir, indirectColor);

pay.color = directLight + indirectLight;

}

GOING FURTHER

145

Want global illumination?

— Add a random outgoing ray

— Recursive call: shootColorRay()

— Account for BRDF

— Add contributions together

A basic path tracer

— Usually encapsulate BRDF

— Direct light done with BRDF::evaluate()

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay(hit.pos, bouncDir);

float3 indirectLight = DiffuseIndirect(bounceDir, indirectColor);

pay.color = directLight + indirectLight;

}

GOING FURTHER

146

Want global illumination?

— Add a random outgoing ray

— Recursive call: shootColorRay()

— Account for BRDF

— Add contributions together

A basic path tracer

— Usually encapsulate BRDF

— Direct light done with BRDF::evaluate()

— Indirect done with BRDF::scatter()
• Also sometimes called sample()

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay(hit.pos, bouncDir);

float3 indirectLight = DiffuseIndirect(bounceDir, indirectColor);

pay.color = directLight + indirectLight;

}

GOING FURTHER

147

Want global illumination?

— Add a random outgoing ray

— Recursive call: shootColorRay()

— Account for BRDF

— Add contributions together

A basic path tracer

— Usually encapsulate BRDF

— Direct light done with BRDF::evaluate()

— Indirect done with BRDF::scatter()
• Also sometimes called sample()

Makes it easy to plug in new materials

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay,

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData(attribs);

float3 directLight = DiffuseShade(hit.pos, hit.norm, hit.difColor);

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay(hit.pos, bouncDir);

float3 indirectLight = DiffuseIndirect(bounceDir, indirectColor);

pay.color = directLight + indirectLight;

}

MANY LIGHTS?

148

MANY LIGHTS?

149

Don’t just evaluate BRDF for one light

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {

// Get information about the light; access your framework’s scene structs

float distToLight = length(gLight.position – hitPos);

float3 dirToLight = normalize(gLight.position – hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI))

: float3(0, 0, 0);

}

MANY LIGHTS?

150

Don’t just evaluate BRDF for one light

— Loop per light

float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {

// Get information about the light; access your framework’s scene structs

float distToLight = length(gLight.position – hitPos);

float3 dirToLight = normalize(gLight.position – hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI))

: float3(0, 0, 0);

}

MANY LIGHTS?

151

Don’t just evaluate BRDF for one light

— Loop per light

Thousands of lights? Becomes expensive
float3 DiffuseShade(float3 hitPos, float3 hitNorm, float3 difColor) {

// Get information about the light; access your framework’s scene structs

float distToLight = length(gLight.position – hitPos);

float3 dirToLight = normalize(gLight.position – hitPos);

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight);

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate(dot(hitNorm, dirToLight)); // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI))

: float3(0, 0, 0);

}

MANY LIGHTS?

152

Don’t just evaluate BRDF for one light

— Loop per light

Thousands of lights? Becomes expensive

What if: emissive triangles, spheres, bunnies?

MANY LIGHTS?

153

Don’t just evaluate BRDF for one light

— Loop per light

Thousands of lights? Becomes expensive

What if: emissive triangles, spheres, bunnies?

Need to sample your lights

— Pick a random location on some light

— Evaluate direct lighting from that point

NAÏVE LIGHT SAMPLING:

154

Lots of point lights (e.g., N points):

— Randomly pick number in [1…N], use that light for shading

NAÏVE LIGHT SAMPLING:

155

Lots of point lights (e.g., N points):

— Randomly pick number in [1…N], use that light for shading

One surface light:

— Pick a point uniformly over the surface

— E.g., on a quad, pick both (u, v) randomly in [0…1]

NAÏVE LIGHT SAMPLING:

156

Lots of point lights (e.g., N points):

— Randomly pick number in [1…N], use that light for shading

One surface light:

— Pick a point uniformly over the surface

— E.g., on a quad, pick both (u, v) randomly in [0…1]

For many emissive surfaces (e.g., N surfaces):

— First pick number in [1…N], then pick random point on surface

NAÏVE LIGHT SAMPLING:

157

Lots of point lights (e.g., N points):

— Randomly pick number in [1…N], use that light for shading

One surface light:

— Pick a point uniformly over the surface

— E.g., on a quad, pick both (u, v) randomly in [0…1]

For many emissive surfaces (e.g., N surfaces):

— First pick number in [1…N], then pick random point on surface

— Alternatively weight choice of light based on area

UP NEXT
Morgan McGuire

With more on materials, sampling, and how to think about
GPU ray tracing performance

QUESTIONS?
E-mail: cwyman@nvidia.com

Twitter: @_cwyman_

Code: http://intro-to-dxr.cwyman.org

mailto:cwyman@nvidia.com
http://intro-to-dxr.cwyman.org/

