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SOME PRELIMINARIES
Ideas needed before GPU ray tracing 



YOU JUST GOT THE BASICS
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YOU JUST GOT THE BASICS

But additional features expected for GPU rendering

— Typically, increased complexity; not just a few primitives

— Render triangle meshes

— Just collections of triangles approximating 3D shapes

— Easy enough; intersect each triangle in turn

— Mesh files usually contain material information

— Often small-scale detail stored in textures
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HOW TO HANDLE MATERIALS AND TEXTURES?
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HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary:  Did we hit?  Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color
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HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary:  Did we hit?  Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color

• Texture coordinates

• Material parameters

• Et cetera
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(0,1)

Triangle vertices have:

texture coordinates

Coordinate here:

Interpolates coordinates at vertices

Same interpolation as position, 

normal, color, etc.

Use coord to index in the image array



HOW TO HANDLE MATERIALS AND TEXTURES?

Ray-primitive intersection

— Not just binary:  Did we hit?  Yes / No

— Also need to store attributes at the hit point, e.g.:

• Positions

• Normal

• Color

• Texture coordinates

• Material parameters

• Et cetera

— All attribute interpolation work the same way
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BASICS OF OPTIMIZATION
Before jumping to GPU, take some baby steps



BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics
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BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

• Repeat

— How do you know when you’re done?

• When you’ve tested every triangle?
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BEFORE DIVING INTO PARALLELIZATION…

Need to talk about some performance basics

— Why is tracing rays slow at all?

Consider basic ray tracing algorithm:

— Take a ray through your scene

— Test triangle to find intersection

• Repeat

— How do you know when you’re done?

• When you’ve tested every triangle?

• Very expensive…

• Every ray could test, 1 million (or more) triangles
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WHAT’S OUR COMPUTATION BUDGET?

28



WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

29



WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

— We need 125 million pixels per second!

30



WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

— We need 125 million pixels per second!

With a ~10 TFLOP state-of-the-art GPU

— If tracing one ray per pixel…

— About 80,000 flops per ray

31



WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

— We need 125 million pixels per second!

With a ~10 TFLOP state-of-the-art GPU

— If tracing one ray per pixel…

— About 80,000 flops per ray

An optimized triangle intersection:  ~10 flops

— Can afford at most 8,000 intersections per ray

32



WHAT’S OUR COMPUTATION BUDGET?

Let’s be easy on ourselves:

— Target just 1920 x 1080 at 60 fps

— We need 125 million pixels per second!

With a ~10 TFLOP state-of-the-art GPU

— If tracing one ray per pixel…

— About 80,000 flops per ray

An optimized triangle intersection:  ~10 flops

— Can afford at most 8,000 intersections per ray

Conclusion:  Don’t test every triangle!
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KEY PRINCIPAL TO OPTIMIZATION:

Make the common case fast
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KEY PRINCIPAL TO OPTIMIZATION:

Make the common case fast

Common case in ray tracing?

— Ray does not intersect a triangle

— For any mesh, ray typically misses mesh

Perhaps:

— First intersect a mesh bounding box

— Most rays avoid testing thousands of triangles 

— But, extra box test when hit bunny
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KEY PRINCIPAL TO OPTIMIZATION:
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What if you have thousands of bunnies?

— Common case:  Ray misses most bunnies

— Can skip testing this half… and this quarter… with a few more boxes
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Build a tree of bounding boxes

— Known as a “bounding volume hierarchy” or BVH

When using a principled tree build

— Reduces number of required intersections

— From O(N) to O(log N)

With a binary tree, 1 million ray-triangle tests becomes:

— Around 20 ray-box tests 

— A few ray-triangle tests in leaf nodes
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KEY PRINCIPAL TO OPTIMIZATION:
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Production ray tracers always use some acceleration structure

But, which structure?  How do you best build it?

— Literally decades of research

— Continuing to today  (e.g., “Wide BVH Traversal with a Short Stack,” Vaidyanathan et al. 2019)

When starting real-time ray tracing, best bet:

— Use someone else’s code

— Quality of your BVH easily affects performance by 2x, 3x, or >10x

• Varies per scene!

— Luckily most APIs will build structure



GOING PARALLEL
Coding for massively parallel GPUs



RAY TRACING:  EMBARRASSINGLY PARALLEL

Defined:  Little to no effort needed to separate into parallel tasks
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RAY TRACING:  EMBARRASSINGLY PARALLEL

Defined:  Little to no effort needed to separate into parallel tasks

Rendering often a prototypical example of embarrassingly parallel

— One obvious way: assign one CPU or GPU core per pixel
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RAY TRACING:  EMBARRASSINGLY PARALLEL

On CPU, call fork() or spawn() to create multiple threads

— Each thread works on separate pixels

— Wait for all threads to complete

— Some threads take longer → may need load balancing
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— Code appears serial, but you have access to current pixel index
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// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray      = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload  = { float3(0, 0, 0) };

TraceRay( ..., ray, payload );

rayColors[curPixel]  = float4( payload.rayColor, 1.0f );

}
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// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray      = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload  = { float3(0, 0, 0) };

TraceRay( ..., ray, payload );

rayColors[curPixel]  = float4( payload.rayColor, 1.0f );

}

Identify the current pixel
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— Code appears serial, but you have access to current pixel index
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// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray      = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload  = { float3(0, 0, 0) };

TraceRay( ..., ray, payload );

rayColors[curPixel]  = float4( payload.rayColor, 1.0f );

}

Setup the ray



RAY TRACING:  EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index
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// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray      = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload  = { float3(0, 0, 0) };

TraceRay( ..., ray, payload );

rayColors[curPixel]  = float4( payload.rayColor, 1.0f );

}

Initialize ray return values



RAY TRACING:  EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index
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// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray      = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload  = { float3(0, 0, 0) };

TraceRay( ..., ray, payload );

rayColors[curPixel]  = float4( payload.rayColor, 1.0f );

}

Trace your ray 



RAY TRACING:  EMBARRASSINGLY PARALLEL

GPU programming model hides thread spawning and load-balancing

— Code appears serial, but you have access to current pixel index
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// Simple DirectX-like ray tracing shader

RWTexture<float4> rayColors;

[shader(“raygeneration”)]

void SimpleRayTracer() {

uint2 curPixel = DispatchRaysIndex().xy;

RayDesc ray      = { GetRayOrigin(curPixel), 0.0f, GetRayDir(curPixel), 1e+38f };

RayPayload payload  = { float3(0, 0, 0) };

TraceRay( ..., ray, payload );

rayColors[curPixel]  = float4( payload.rayColor, 1.0f );

}

Output your results



DOING IT YOURSELF V.S. EXISTING APIS

Embarrassingly parallel ≠ easy to parallelize
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DOING IT YOURSELF V.S. EXISTING APIS

Embarrassingly parallel ≠ easy to parallelize

— Not the same as getting best performance

Many performance considerations:

— # intersections, data structures, coherence, caching, load-balancing, SIMD

APIs can leverage best-known methods behind your back

APIs allow you to shoot yourself in the foot without knowing it

APIs come at many levels (e.g., use of CUDA without ray tracing API)
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SOME RAY TRACING APIS

Hardware vendor specific:

— OptiX, Embree, FireRays

Cross-vendor APIs:

— DirectX Raytracing, Vulkan RT

Game engine APIs:

— Unity, Unreal  

Different:

— Audiences, learning curves, flexibility, performance, built-in optimizations
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TODAY:  USING DIRECTX FOR SAMPLE CODE

Why?

— DirectX widely used API for interactive graphics

— Similar to Vulkan model

— Abstracts some bits tricky for novices’ ray tracers

— Tutorial frameworks for easy experimentation
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DIRECTX RAY TRACING RESOURCES

Some DirectX Ray Tracing tutorials:

— Tutorial framework that hides the C++ API  ( http://intro-to-dxr.cwyman.org )

• Easy to get started, not targeted at optimal performance

• Used for my sample code today

• Builds on Falcor for abstraction

— Lower-level tutorial covering DirectX API

• From the “Introduction to DirectX Ray Tracing” Ray Tracing Gems article

— A simple getting started blog post

— Microsoft’s DXR samples

• A DirectX Raytracing functional specification

70

http://intro-to-dxr.cwyman.org/
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/acmarrs/IntroToDXR
https://link.springer.com/chapter/10.1007/978-1-4842-4427-2_3
https://developer.nvidia.com/rtx/raytracing/dxr/DX12-Raytracing-tutorial-Part-1
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html


WE’LL FOCUS ON GPU SHADER CODE

Why?

— Focus on tracing rays, identifying where to trace rays

— Where interesting rendering algorithms mostly live
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WE’LL FOCUS ON GPU SHADER CODE

Why?

— Focus on tracing rays, identifying where to trace rays

— Where interesting rendering algorithms mostly live

The CPU has vital infrastructure…

— But it’s largely reusable stuff like asset loaders

— Not interesting (to me) to re-write

For parallel GPU ray tracer, CPU code is mostly glue:

— Pass configuration and data to GPU

— Launch GPU processes

73



STRUCTURE OF GPU SHADERS
Specifically DirectX HLSL, but many similarities elsewhere



FIVE TYPES OF RAY TRACING SHADERS
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Ray tracing pipeline split into five shaders:

— A ray generation shader define how to start tracing rays

— Intersection shader(s) define how rays intersect geometry

— Miss shader(s) shading for when rays miss geometry

— Closest-hit shader(s) shading at the intersection point
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Ray tracing pipeline split into five shaders:

— A ray generation shader define how to start tracing rays

— Intersection shader(s) define how rays intersect geometry

— Miss shader(s) shading for when rays miss geometry

— Closest-hit shader(s) shading at the intersection point

— Any-hit shader(s) run once per hit** (e.g., for transparency)



FIVE TYPES OF RAY TRACING SHADERS
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Ray tracing pipeline split into five shaders:

— A ray generation shader define how to start tracing rays

— Intersection shader(s) define how rays intersect geometry

— Miss shader(s) shading for when rays miss geometry

— Closest-hit shader(s) shading at the intersection point

— Any-hit shader(s) run once per hit** (e.g., for transparency)

← Controls other shaders

← Defines object shapes (one shader per type)

← Controls per-ray behavior (often many types)



HOW DO THESE FIT TOGETHER?      [EYE CHART VERSION]
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Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From 
TraceRay()

Miss 
Shader

Acceleration
Traversal

No (additional) potential hits

Intersection
Shader

Closest
Hit?

No intersection

Not closest

Any-Hit 
Shader

This is closest hit

Is 
Opaque?

Ignore hit 
(transparent)

Accept hit

Yes

Update
Closest
Hit Data

Have
Hit?

Yes

No

No



HOW DO THESE FIT TOGETHER?      [LOGICAL VERSION]
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Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From 
TraceRay()

Miss 
Shader

Acceleration
Traversal

Intersection
Shader

Any-Hit 
Shader

Loop during ray tracing, testing hits until there’s no more; then shade



HOW DO THESE FIT TOGETHER?      [LOGICAL VERSION]
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Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From 
TraceRay()

Miss 
Shader

Acceleration
Traversal

Intersection
Shader

Any-Hit 
Shader

Loop during ray tracing, testing hits until there’s no more; then shade

Some important details here; learn later for advanced functionality



REALLY SIMPLE GPU RAY TRACER
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work



REALLY SIMPLE GPU RAY TRACER
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Output image buffer

— Communicates results with CPU



REALLY SIMPLE GPU RAY TRACER
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Information about scene

— Passed as input from the CPU



REALLY SIMPLE GPU RAY TRACER
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Each ray returns some value

— Return payload is user-defined

— Often, like this one, just a color

Before tracing, initialize payload



REALLY SIMPLE GPU RAY TRACER
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

You write a function here

— Computes per-pixel ray direction

— Based on location on screen
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

You write a function here

— Computes per-pixel ray direction

— Based on location on screen

Setup the ray to trace
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

You write a function here

— Computes per-pixel ray direction

— Based on location on screen

Setup the ray to trace

— Min and max distances to search
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Trace your ray here
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Trace your ray here

— Scene BVH
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Trace your ray here

— Scene BVH

— No special ray behaviors
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Trace your ray here

— Scene BVH

— No special ray behaviors

— What geometry should we test?

• Bitmask; 0xFF → test all geometry
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Trace your ray here

— Scene BVH

— No special ray behaviors

— What geometry should we test?

• Bitmask; 0xFF → test all geometry

— Ray and payload from earlier
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Which miss shader to use?

— There’s a list of miss shaders

— Specify index of the one to use
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Which miss shader to use?

— There’s a list of miss shaders

— Specify index of the one to use

In my tutorials, MyMiss is index 0

— Why? First miss shader I loaded
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Which hit group to use?

— May have 1 any-hit shader

— May have 1 closest-hit shader

— May have 1 intersection shader
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

Remember:

— Ray generation shader starts work

Which hit group to use?

— May have 1 any-hit shader

— May have 1 closest-hit shader

— May have 1 intersection shader

Here, has just one shader

— It’s index 0 → specified first on load
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

How to read at high level:

— For each pixel determine ray
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

How to read at high level:

— For each pixel determine ray

— Shoot the ray
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

How to read at high level:

— For each pixel determine ray

— Shoot the ray

— If it misses?  Return blue
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

How to read at high level:

— For each pixel determine ray

— Shoot the ray

— If it misses?  Return blue

— If it hits?  Return red
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

How to read at high level:

— For each pixel determine ray

— Shoot the ray

— If it misses?  Return blue

— If it hits?  Return red

— Output our result
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RWTexture<float4> gOutTex;

struct RayPayload { float3 color; };

[shader(“miss”)]

void MyMiss(inout RayPayload payload)  {

payload.color = float3( 0, 0, 1 );

} 

[shader(“closesthit”)]

void MyClosestHit(inout RayPayload data, 

BuiltinTriangleIntersectAttribs attribs)  {

data.color = float3( 1, 0, 0 );

}

[shader(“raygeneration”)]

void MyRayGen()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

RayDesc ray        = { gCamera.posW, 0.0f, pixelRayDir, 1e+38f };    

RayPayload payload = { float3(0, 0, 0) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 0, 1, 0, ray, payload );

outTex[curPixel]   = float4( payload.color, 1.0f );

}

For this scene

This code renders this



WHAT ABOUT A REAL EXAMPLE?

106



WHAT ABOUT A REAL EXAMPLE?

107

Examples from my DXR tutors:   http://intro-to-dxr.cwyman.org

— Click on “code walkthrough” 

— Not quite equivalent to any of those, but close

http://intro-to-dxr.cwyman.org/
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How about adding shadows?
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How about adding shadows?

— For each pixel, determine if light visible

— Shoot a ray towards light

×
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Trace a ray from the camera
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Trace a ray from the camera

— At the shading point (i.e., the closest hit)

— Trace another ray towards the light

?
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Trace a ray from the camera

— At the shading point (i.e., the closest hit)

— Trace another ray towards the light

— If it hits, shade the pixel as in shadow

— If it misses, illuminate the pixel by the light

?
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Encapsulate a shadow ray

— Create  shootShadowRay()

— Can call while shading

... 

struct ShadowPayload {

float visibility;  // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT)  {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay( gRtScene, flags, 0xFF, 0, 1, 0, ray, pay );

return pay.visibility;

}

...



A REUSABLE SHADOW RAY

114

Encapsulate a shadow ray

— Create a ray

• From some origin

• In some direction

• Check occlusions in [tmin…tmax]

... 

struct ShadowPayload {

float visibility;  // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT)  {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay( gRtScene, flags, 0xFF, 0, 1, 0, ray, pay );

return pay.visibility;

}

...
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Encapsulate a shadow ray

— Create a ray

• From some origin

• In some direction

• Check occlusions in [tmin…tmax]

— Assume shadows are occluded

... 

struct ShadowPayload {

float visibility;  // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT)  {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay( gRtScene, flags, 0xFF, 0, 1, 0, ray, pay );

return pay.visibility;

}

...
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Encapsulate a shadow ray

— Create a ray

• From some origin

• In some direction

• Check occlusions in [tmin…tmax]

— Assume shadows are occluded

— Trace the ray 

— Return 1 if lit, 0 otherwise

... 

struct ShadowPayload {

float visibility;  // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT)  {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay( gRtScene, flags, 0xFF, 0, 1, 0, ray, pay );

return pay.visibility;

}

...
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Encapsulate a shadow ray

— Create a ray

• From some origin

• In some direction

• Check occlusions in [tmin…tmax]

— Assume shadows are occluded

— Trace the ray 

— Return 1 if lit, 0 otherwise

Some shadow ray optimizations

— No shading; skip closest hit

— End at any occlusion

• Need if not where

... 

struct ShadowPayload {

float visibility;  // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT)  {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay( gRtScene, flags, 0xFF, 0, 1, 0, ray, pay );

return pay.visibility;

}

...
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Miss shader:

— We missed…  

— Set visibility to 1.0 

... 

struct ShadowPayload {

float visibility;  // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT)  {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay( gRtScene, flags, 0xFF, 0, 1, 0, ray, pay );

return pay.visibility;

}

...
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Miss shader:

— We missed…  

— Set visibility to 1.0

Any hit shader: 

— Asks is occluder transparent?

— If so, ignore this hit

... 

struct ShadowPayload {

float visibility;  // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT)  {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay( gRtScene, flags, 0xFF, 0, 1, 0, ray, pay );

return pay.visibility;

}

...
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Gives reusable shadow rays

— Useful in many contexts

... 

struct ShadowPayload {

float visibility;  // 0.0 means ‘shadowed’, 1.0 means ‘lit’

};

[shader(“miss”)]

void ShadowMiss(inout ShadowPayload pay) {

pay.visibility = 1.0f;

}

[shader(“anyhit”)]

void ShadowAnyHit(inout ShadowPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

float shootShadowRay(float3 orig, float3 dir, float minT, float maxT)  {

RayDesc ray = { orig, minT, dir, maxT };

ShadowPayload pay = { 0.0f };

uint flags = RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH |

RAY_FLAG_SKIP_CLOSEST_HIT_SHADER;

TraceRay( gRtScene, flags, 0xFF, 0, 1, 0, ray, pay );

return pay.visibility;

}

...
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Gives reusable shadow rays

— Useful in many contexts

Like where?

— Maybe:  want to shade this point

?



float3 DiffuseShade( float3 hitPos, float3 hitNorm, float3 difColor ) {

// Get information about the light; access your framework’s scene structs

float distToLight = length( gLight.position – hitPos );

float3 dirToLight = normalize( gLight.position – hitPos );

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight );

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate( dot( hitNorm, dirToLight ) );  // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI) ) 

: float3(0, 0, 0);

}

SHADING A DIFFUSE SURFACE

122

To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point



float3 DiffuseShade( float3 hitPos, float3 hitNorm, float3 difColor ) {

// Get information about the light; access your framework’s scene structs

float distToLight = length( gLight.position – hitPos );

float3 dirToLight = normalize( gLight.position – hitPos );

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight );

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate( dot( hitNorm, dirToLight ) );  // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI) ) 

: float3(0, 0, 0);

}

SHADING A DIFFUSE SURFACE
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To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point

Grab light information

— Direction to light

— How far away is it?
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To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point

Grab light information

— Direction to light

— How far away is it?

Trace our shadow ray

float3 DiffuseShade( float3 hitPos, float3 hitNorm, float3 difColor ) {

// Get information about the light; access your framework’s scene structs

float distToLight = length( gLight.position – hitPos );

float3 dirToLight = normalize( gLight.position – hitPos );

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight );

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate( dot( hitNorm, dirToLight ) );  // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI) ) 

: float3(0, 0, 0);

}
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To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point

Grab light information

— Direction to light

— How far away is it?

Trace our shadow ray

Compute diffuse shading

float3 DiffuseShade( float3 hitPos, float3 hitNorm, float3 difColor ) {

// Get information about the light; access your framework’s scene structs

float distToLight = length( gLight.position – hitPos );

float3 dirToLight = normalize( gLight.position – hitPos );

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight );

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate( dot( hitNorm, dirToLight ) );  // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI) ) 

: float3(0, 0, 0);

}
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To shade, we need:

— Position at hit point

— Normal at hit point

— Material at hit point

Grab light information

— Direction to light

— How far away is it?

Trace our shadow ray

Compute diffuse shading

Want more complex material?

— Insert different code here

float3 DiffuseShade( float3 hitPos, float3 hitNorm, float3 difColor ) {

// Get information about the light; access your framework’s scene structs

float distToLight = length( gLight.position – hitPos );

float3 dirToLight = normalize( gLight.position – hitPos );

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight );

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate( dot( hitNorm, dirToLight ) );  // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI) ) 

: float3(0, 0, 0);

}
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Where to use DiffuseShade()?
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Where to use DiffuseShade()?

Encapsulate tracing a color ray

struct IndirectPayload {

float3 color;    // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor( WorldRayDirection() );

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

pay.color = DiffuseShade( hit.pos, hit.norm, hit.difColor );

}

float3 shootColorRay(float3 orig, float3 dir, float minT )  {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3( 0.0f ) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay );

return pay.color;

}
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Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

struct IndirectPayload {

float3 color;    // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor( WorldRayDirection() );

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

pay.color = DiffuseShade( hit.pos, hit.norm, hit.difColor );

}

float3 shootColorRay(float3 orig, float3 dir, float minT )  {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3( 0.0f ) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay );

return pay.color;

}
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Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

— Trace ray, then return its color

struct IndirectPayload {

float3 color;    // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor( WorldRayDirection() );

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

pay.color = DiffuseShade( hit.pos, hit.norm, hit.difColor );

}

float3 shootColorRay(float3 orig, float3 dir, float minT )  {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3( 0.0f ) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay );

return pay.color;

}
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Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

— Trace ray, then return its color

— For every hit, check transparency

struct IndirectPayload {

float3 color;    // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor( WorldRayDirection() );

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

pay.color = DiffuseShade( hit.pos, hit.norm, hit.difColor );

}

float3 shootColorRay(float3 orig, float3 dir, float minT )  {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3( 0.0f ) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay );

return pay.color;

}
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Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

— Trace ray, then return its color

— For every hit, check transparency

— On miss, return background

struct IndirectPayload {

float3 color;    // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor( WorldRayDirection() );

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

pay.color = DiffuseShade( hit.pos, hit.norm, hit.difColor );

}

float3 shootColorRay(float3 orig, float3 dir, float minT )  {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3( 0.0f ) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay );

return pay.color;

}
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Where to use DiffuseShade()?

Encapsulate tracing a color ray

— Setup a ray

— Initialize return color to black

— Trace ray, then return its color

— For every hit, check transparency

— On miss, return background

— On closest hit, shade

struct IndirectPayload {

float3 color;    // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor( WorldRayDirection() );

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

pay.color = DiffuseShade( hit.pos, hit.norm, hit.difColor );

}

float3 shootColorRay(float3 orig, float3 dir, float minT )  {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3( 0.0f ) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay );

return pay.color;

}
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Go back to ray gen shader

— Similar to simple one we started with

[shader(“raygeneration”)]

void BasicRayTracer()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

float3 pixelColor = shootColorRay( gCamera.posW, pixelRayDir, 0.0f );

outTex[curPixel]   = float4( pixelColor, 1.0f );

}
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Go back to ray gen shader

— Similar to simple one we started with

— Get current pixel, it’s ray direction
[shader(“raygeneration”)]

void BasicRayTracer()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

float3 pixelColor = shootColorRay( gCamera.posW, pixelRayDir, 0.0f );

outTex[curPixel]   = float4( pixelColor, 1.0f );

}
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Go back to ray gen shader

— Similar to simple one we started with

— Get current pixel, it’s ray direction

— Shoot a color ray in that direction [shader(“raygeneration”)]

void BasicRayTracer()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

float3 pixelColor = shootColorRay( gCamera.posW, pixelRayDir, 0.0f );

outTex[curPixel]   = float4( pixelColor, 1.0f );

}
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Go back to ray gen shader

— Similar to simple one we started with

— Get current pixel, it’s ray direction

— Shoot a color ray in that direction

— Output the final result

[shader(“raygeneration”)]

void BasicRayTracer()  {

uint2 curPixel = DispatchRaysIndex().xy;

float3 pixelRayDir = normalize( getRayDirFromPixelID( curPixel ) );

float3 pixelColor = shootColorRay( gCamera.posW, pixelRayDir, 0.0f );

outTex[curPixel]   = float4( pixelColor, 1.0f );

}
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Full code, binaries, and walk through:

— http://intro-to-dxr.cwyman.org

http://intro-to-dxr.cwyman.org/


GOING FURTHER
More complex materials, multi-bounce lighting, etc.
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Take code for color ray & tweak

struct IndirectPayload {

float3 color;    // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor( WorldRayDirection() );

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

pay.color = DiffuseShade( hit.pos, hit.norm, hit.difColor );

}

float3 shootColorRay(float3 orig, float3 dir, float minT )  {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3( 0.0f ) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay );

return pay.color;

}
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Take code for color ray & tweak

— Mostly here:

struct IndirectPayload {

float3 color;    // will store ray color

};

[shader(“miss”)]

void IndirectMiss(inout IndirectPayload pay) {

pay.color = GetBackgroundColor( WorldRayDirection() );

}

[shader(“anyhit”)]

void IndirectAnyHit(inout IndirectPayload pay, BuiltinIntersectAttribs attribs) {

if (alphaTestFails(attribs))

IgnoreHit();

}

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

pay.color = DiffuseShade( hit.pos, hit.norm, hit.difColor );

}

float3 shootColorRay(float3 orig, float3 dir, float minT )  {

RayDesc ray = { orig, minT, dir, 1.0e+38 };

IndirectPayload pay = { float3( 0.0f ) };

TraceRay( gRtScene, RAY_FLAG_NONE, 0xFF, 1, 2, 1, ray, pay );

return pay.color;

}
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Want global illumination?

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

float3 directLight = DiffuseShade( hit.pos, hit.norm, hit.difColor );

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay( hit.pos, bouncDir );

float3 indirectLight = DiffuseIndirect( bounceDir, indirectColor );

pay.color = directLight + indirectLight;

}
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Want global illumination?

— Add a random outgoing ray

— Recursive call: shootColorRay()

— Account for BRDF

— Add contributions together

A basic path tracer

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

float3 directLight = DiffuseShade( hit.pos, hit.norm, hit.difColor );

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay( hit.pos, bouncDir );

float3 indirectLight = DiffuseIndirect( bounceDir, indirectColor );

pay.color = directLight + indirectLight;

}
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Want global illumination?

— Add a random outgoing ray

— Recursive call: shootColorRay()

— Account for BRDF

— Add contributions together

A basic path tracer

— Usually encapsulate BRDF

— Direct light done with BRDF::evaluate()

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

float3 directLight = DiffuseShade( hit.pos, hit.norm, hit.difColor );

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay( hit.pos, bouncDir );

float3 indirectLight = DiffuseIndirect( bounceDir, indirectColor );

pay.color = directLight + indirectLight;

}
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Want global illumination?

— Add a random outgoing ray

— Recursive call: shootColorRay()

— Account for BRDF

— Add contributions together

A basic path tracer

— Usually encapsulate BRDF

— Direct light done with BRDF::evaluate()

— Indirect done with BRDF::scatter() 
• Also sometimes called sample()

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

float3 directLight = DiffuseShade( hit.pos, hit.norm, hit.difColor );

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay( hit.pos, bouncDir );

float3 indirectLight = DiffuseIndirect( bounceDir, indirectColor );

pay.color = directLight + indirectLight;

}
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Want global illumination?

— Add a random outgoing ray

— Recursive call: shootColorRay()

— Account for BRDF

— Add contributions together

A basic path tracer

— Usually encapsulate BRDF

— Direct light done with BRDF::evaluate()

— Indirect done with BRDF::scatter() 
• Also sometimes called sample()

Makes it easy to plug in new materials

[shader(“closesthit”)]

void IndirectClosestHit(inout IndirectPayload pay, 

BuiltinTriangleIntersectAttribs attribs) {

ShadingData hit = getHitShadingData( attribs );

float3 directLight = DiffuseShade( hit.pos, hit.norm, hit.difColor );

float3 bounceDir = selectRandomDirection();

float3 indirectColor = shootColorRay( hit.pos, bouncDir );

float3 indirectLight = DiffuseIndirect( bounceDir, indirectColor );

pay.color = directLight + indirectLight;

}
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Don’t just evaluate BRDF for one light

float3 DiffuseShade( float3 hitPos, float3 hitNorm, float3 difColor ) {

// Get information about the light; access your framework’s scene structs

float distToLight = length( gLight.position – hitPos );

float3 dirToLight = normalize( gLight.position – hitPos );

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight );

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate( dot( hitNorm, dirToLight ) );  // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI) ) 

: float3(0, 0, 0);

}
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Don’t just evaluate BRDF for one light

— Loop per light

float3 DiffuseShade( float3 hitPos, float3 hitNorm, float3 difColor ) {

// Get information about the light; access your framework’s scene structs

float distToLight = length( gLight.position – hitPos );

float3 dirToLight = normalize( gLight.position – hitPos );

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight );

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate( dot( hitNorm, dirToLight ) );  // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI) ) 

: float3(0, 0, 0);

}
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Don’t just evaluate BRDF for one light

— Loop per light

Thousands of lights?  Becomes expensive
float3 DiffuseShade( float3 hitPos, float3 hitNorm, float3 difColor ) {

// Get information about the light; access your framework’s scene structs

float distToLight = length( gLight.position – hitPos );

float3 dirToLight = normalize( gLight.position – hitPos );

// Shoot shadow ray with our encapsulated shadow tracing function

float isLit = shootShadowRay(hitPos, dirToLight, 1.0e-4f, distToLight );

// Compute our NdotL term; shoot our shadow ray in selected direction

float NdotL = saturate( dot( hitNorm, dirToLight ) );  // In range [0..1]

// Return shaded color

return isLit

? (NdotL * gLight.intensity * (difColor / M_PI) ) 

: float3(0, 0, 0);

}
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— Loop per light

Thousands of lights?  Becomes expensive
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Don’t just evaluate BRDF for one light

— Loop per light

Thousands of lights?  Becomes expensive

What if: emissive triangles, spheres, bunnies?

Need to sample your lights

— Pick a random location on some light

— Evaluate direct lighting from that point
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Lots of point lights (e.g., N points):

— Randomly pick number in [1…N], use that light for shading
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One surface light:

— Pick a point uniformly over the surface

— E.g., on a quad, pick both (u, v) randomly in [0…1]
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Lots of point lights (e.g., N points):

— Randomly pick number in [1…N], use that light for shading

One surface light:

— Pick a point uniformly over the surface

— E.g., on a quad, pick both (u, v) randomly in [0…1]

For many emissive surfaces (e.g., N surfaces):

— First pick number in [1…N], then pick random point on surface



NAÏVE LIGHT SAMPLING:
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Lots of point lights (e.g., N points):

— Randomly pick number in [1…N], use that light for shading

One surface light:

— Pick a point uniformly over the surface

— E.g., on a quad, pick both (u, v) randomly in [0…1]

For many emissive surfaces (e.g., N surfaces):

— First pick number in [1…N], then pick random point on surface

— Alternatively weight choice of light based on area



UP NEXT
Morgan McGuire

With more on materials, sampling, and how to think about 
GPU ray tracing performance



QUESTIONS?
E-mail: cwyman@nvidia.com

Twitter: @_cwyman_

Code: http://intro-to-dxr.cwyman.org

mailto:cwyman@nvidia.com
http://intro-to-dxr.cwyman.org/

