= thrive
@ SIGGRAPH_2019

LLLLLLLLLL « 2B JULY - 1 AUGUST

Introduction to
Real-Time Ray Tracing

Peter Shirley
Chris Wyman
Morgan McGuire

NVIDIA

= thrive
@ SIGGRAPH2019

LOS ANGELES « 2B JULY - 1 AUGUST

Introduction to Real-Time Ray Tracing Part 2

COURSE OVERVIEW

Peter Shirley
NVIDIA

Mirrors, glass, shadows
Multi-sampled AA
Hand-built BVH

1980s Glossy reflection,
diffuse inter-reflection

2000s Movie rendering
2010s De-noising
now interactive

Graphics and 1.D. Foley
Image Processing Editor

An Improved
[llumination Model for
Shaded Display

Turner Whitted
Bell Laboratories
Holmdel, New Jersey

To accurately render a two-dimensional image of a
three-dimensional scene, global illumination information
that affects the intensity of each pixel of the image
must be known at the time the intensity is calculated.
In a simplified form, this information is stored in a tree
of “rays” extending from the viewer to the first surface
encountered and from there to other surfaces and to
the light sources. A visible surface algorithm creates
this tree for each pixel of the display and passes it to
the shader. The shader then traverses the tree to
determine the intensity of the light received by the
viewer. Consideration of all of these factors allows the
shader to accurately simulate true reflection, shadows,
and refraction, as well as the effects simulated by
conventional shaders. Anti-aliasing is included as an
integral part of the visibility calculations. Surfaces

The role of the illumination model is to determine
how much light is reflected to the viewer from a visible
point on a surface as a function of light source direction
and strength, viewer position, surface orientation, and
surface propertics. The shading calculations can be per-
formed on three scales: microscopic, local, and global.
Although the exact nature of reflection from surfaces is
best explained in terms of microscopic interactions be-
tween light rays and the surface [3], most shaders produce
excellent results using aggregate local surface data. Un-
fortunately, these models are usually limited in scope,
ie., they look only at light source and surface orienta-
tions, while ignoring the overall setting in which the
surface is placed. The reason that shaders tend to operate
on local data is that traditional visible surface algorithms
cannol provide the necessary global data.

i=Is _ =t V
I=li+ka ¥ (N-D)+ ke T AN (n

=1 g=1

HARD SHADOWS

ONE SAMPLE PER PIXEL

« Now-2:55pm Peter Shirley Introduction to ray tracing

« 3:05-3:55 Chris Wyman Going fast: Parallelizing Your Ray Tracer

 4:05-5:15 Morgan Mcguire

RAY TRACING
ALGORITHMS

AN C AN s O 12
&= Fol) = [foln) dv=2 =1
S
Solving for 4" we get v =1 — /1 = &,. For [
14

. o) . ‘)N
§2 = !'n|n’(-f|‘;") = / .fn|(;(-""|’;’) df = ——

| — ~/
J () I
thus 3" = & (1 —4') = &1 — &. Therefore
— —_—
x' = pPo + &2V 1 =& (IN _l)u) +1-=VvI=& (I)z _I)n)

A RAY 15 A LOCATION AND A PIRECTION

5

A

A RAY CAN TEST VISIBILITY
BETWEEN TWO POINTS

/990
e Q-R

R
P(t) =R +t* (Q-R)

A RAY CAN TEST VISIBILITY
BETWEEN TWO POINTS ON SURFACES

e
%
R

P(t) =R +t* (Q-R)

FLOATING POINT PAIN IN NECK

o s N

\

HITS AT T = -0.25, 0, 1, 1.25

FLOATING POINT PAIN IN NECK
/\>

HITS AT T = -0.25, -0.001, 1.001, 1.25

PROPAGATING RAYS

SNTA
S

D
P()=A+t*B

For each pixel ij

c ij

rgb radiance(ray r)

if Q = hit(r, 0.01], infinity)
s = ray(Q, light-Q)
if hit(s, 0.01,0.99)

col = direct light

col += radiance(ray(Q, reflection))
return col

else
return background(r.direction)

radiance(ray(eye,pixel center - eye)

PO

P2

A0

P1

PO

P2

A0

P1

w1l = A1/A
= A1/(A1+A2+A3) o,

4

P1

u=wO0*u0 + w1*u1 + w2*u2

N2
uz,vz

o,V
NO UN VI

N1

WEIGHTED AVERAGES EVERYWHERE

WEIGHTED AVERAGES EVERYWHERE

COLOR = % + ® +9 +9 + @+9+H+0

WEIGHTED AVERAGES EVERYWHERE

WEIGHTEDP AVERAGES EVERYWHERE

WEIGHTED AVERAGES EVERYWHERE

COLOR =

SAMPLES CAN BE ANYTHING!
QMC, MONTE CARLO, BLUE NOISE

IF YOU SAMPLE NON-UNIFORMLY, THEN
WEIGHT THEM APPROPRIATELY

IF THIS MAKES YOUR PROGRAM BETTER
THEN YOU ARE IMPORTANCE SAMPLING

CHOOSING WEIGHTS EXACTLY RIGHT 16
"MONTE CARLO INTEGRATION”

Without random sampling
Q = light center
P = shaded point
Shadow ray = P + t*(Q-P)
Is there a hit for t in [0.001, 0.999]?

Without random sampling
Q = light center
P = shaded point
Shadow ray = P + t*(Q-P)
Is there a hit for t in [0.001, 0.999]?

With random sampling
Q = light center + random_in_sphere_of radius(0.3)
P = shaded point
Shadow ray = P + t*(Q-P)
Is there a hit for t in [0.001, 0.999]?

@ PIXEL

vAg
P

vAg
P

vAg
P

vAg
DA

Multiplier = 1.0
\

vAg
DA

Randomly perturb?
\

/
N

v
b

N4
Q

Random Points on Triangles

Random Points on Triangles

Random Points on Triangles

(1,1)

® o o
y
° ® .
® @ ®
0,0) X P=f(x,y)A +g(x,y)*B +

(1-1(x,y)-g(x,y))*C

Uniform Points on Triangles

lens

/screen

SUMMARY
RAYS ARE A PIRECTEPD LINE
QUERYING FOR HITS MAINLY:
1) PO TWO POINTS SEE EACH OTHER?
2) WHAT 15 SEEN IN THAT PIRECTION?
FOR 2), YOU GET AUXILIARY INFO
COMPUTATION 15 A WEIGHTED AVERAGED

PONT GET TOO UPTIGHT ABOUT PERFECT
WEIGHTS YET-- BIAS 15 NOT FATAL!

For debugging: brute force renderer

radiance(ray r)
If Q =ray_hit(r)
R =ray(Q, N + random_on_unit_sphere()
Return emitted + albedo*radiance(r)
Else T
Return bg_color

FINAL THOUGHT BEFORE BREAK

RAY TRACING is a
COMPUTATIONAL

tool and not an
ALGORITHM!

